Previous |  Up |  Next

Article

Title: Convex $(L,M)$-fuzzy remote neighborhood operators (English)
Author: Zhao, Hu
Author: Jia, Li-Yan
Author: Chen, Gui-Xiu
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 2
Year: 2024
Pages: 150-171
Summary lang: English
.
Category: math
.
Summary: In this paper, two kinds of remote neighborhood operators in $(L, M)$-fuzzy convex spaces are proposed, which are called convex $(L,M)$-fuzzy remote neighborhood operators. It is proved that these two kinds of convex $(L,M)$-fuzzy remote neighborhood operators can be used to characterize $(L, M)$-fuzzy convex structures. In addition, the lattice structures of two kinds of convex $ (L,M) $-fuzzy remote neighborhood operators are also given. (English)
Keyword: convex $(L,M)$-fuzzy remote neighborhood operator
Keyword: $(L,M)$-fuzzy convex structure
Keyword: complete lattice
MSC: 03E72
MSC: 52A01
MSC: 54A40
DOI: 10.14736/kyb-2024-2-0150
.
Date available: 2024-06-03T09:37:38Z
Last updated: 2024-06-03
Stable URL: http://hdl.handle.net/10338.dmlcz/152413
.
Reference: [1] Fang, J. M., Yue, Y. L.: $L$-fuzzy closure systems..Fuzzy Sets Syst. 161 (2010), 1242-1252. MR 2603067,
Reference: [2] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislowe, M., Scott, D. S.: Continuous Lattices and Domains..Cambridge University Press, Cambridge 2003. MR 1975381
Reference: [3] Höhle, U., Rodabaugh, S. E.: Mathematics of fuzzy sets. Logic, topology, and measure theory..Handbooks of Fuzzy Sets, 1999. MR 1788902
Reference: [4] Lassak, M.: On metric $B$-convexity for which diameters of any set and its hull are equal..Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 969-975. MR 0461286
Reference: [5] Maruyama, Y.: Lattice-valued fuzzy convex geometry..RIMS Kokyuroku 1641 (2009), 22-37.
Reference: [6] Munkres, J. R.: Topology: A First Course..Prentice-Hall, Englewood Cliffs, NJ 1975. MR 0464128
Reference: [7] Pang, B.: Bases and subbases in $(L,M)$-fuzzy convex spaces-.Comput. Appl. Math. 39 (2020), 41. MR 4059965,
Reference: [8] Pang, B.: Hull operators and interval operators in $(L,M)$-fuzzy convex spaces..Fuzzy Sets Syst. 405 (2021), 106-127. MR 4191313,
Reference: [9] Pang, B., Shi, F.-G.: Strong inclusion orders between $L$-subsets and its applications in $L$-convex spaces..Quaestion. Math. 41 (2018), 8, 1021-1043. MR 3885942,
Reference: [10] Rosa, M. V.: On fuzzy topology fuzzy convexity spaces and fuzzy local convexity..Fuzzy Sets Syst. 62 (1994), 97-100. MR 1259888,
Reference: [11] Shi, F. G., Xiu, Z. Y.: A new approach to the fuzzification of convex structures..J. Appl. Math. 2014 (2014), 1-12. MR 3259199,
Reference: [12] Shi, F. G., Xiu, Z.-Y.: $(L,M)$-fuzzy convex structures..J. Nonlinear Sci. Appl. 10 (2017), 3655-3669. MR 3680307,
Reference: [13] Soltan, V. P.: $d$-convexity in graphs. (Russian).Dokl. Akad. Nauk SSSR 272 (1983), 535-537. MR 0723776
Reference: [14] Šostak, A. P.: On a fuzzy topological structure Rend..Circ. Mat. Palermo 11 (1985), 89-103. MR 0897975
Reference: [15] Vel, M.L.J. Van De: Theory of Convex Structures..North-Holland, Amsterdam 1993. MR 1234493,
Reference: [16] Wang, G.-J.: Theory of topological molecular lattices..Fuzzy Sets Syst. 47 (1992), 351-376. MR 1166284,
Reference: [17] Xiu, Z. Y., Pang, B.: Base axioms and subbase axioms in $M$-fuzzifying convex spaces..Iran. J. Fuzzy Syst. 15 (2018), 75-87. MR 3840022
Reference: [18] Yang, H., Li, E. Q.: A new approach to interval operators in $L$-convex spaces..J. Nonlinear Convex Anal. 21 (2020), 12, 2705-2714. MR 4194712
Reference: [19] Yang, H., Pang, B.: Fuzzy points based betweenness relations in $L$-convex spaces..Filomat. 35 (2021), 10, 3521-3532. MR 4365455,
Reference: [20] Yang, X. F., Li, S. G.: Net-theoretical convergence in $ (L,M) $-fuzzy cotopological spaces..Fuzzy Sets Syst. 204 (2012), 53-65. MR 2950795,
Reference: [21] Yue, Y. L., Fang, J. M.: Categories isomorphic to the Kubiak-Šostak extension of TML..Fuzzy Sets Syst. 157 (2006), 832-842. MR 2223563,
Reference: [22] Zhao, H., Hu, X., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb: Concave $(L,M)$-fuzzy interior operators and $(L,M)$-fuzzy hull operators..Comput. Appl. Math. 40 (2021), 301. MR 4338783,
Reference: [23] Zhao, H., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb, Chen, G. X.: On separation axioms in $(L, M)$-fuzzy convex structures..J. Intel. Fuzzy Syst. 40 (2021), 5, 8765-8773. MR 4338783,
Reference: [24] Zhao, H., Song, Q. L., Sayed, O. R., El-Sanousy, E., Sayed, Y. H.Ragheb, Chen, G. X.: Corrigendum to "On $(L, M)$-fuzzy convex structures"..Filomat. 35 (2021), 5, 1687-1691. MR 4364030,
Reference: [25] Zhao, H., Jia, L. Y., Chen, G. X.: Product and coproduct structures of $(L, M)$-fuzzy hull operators..J. Intel. Fuzzy Syst. 44 (2023), 3515-3526. MR 0743509,
Reference: [26] Zhao, H., Zhao, Y. J., Zhang, S. Y.: On $(L,N)$-fuzzy betweenness relations..Filomat. 37 (2023), 11, 3559-3573. MR 4573824,
Reference: [27] Zhao, H., Hu, X., Chen, G. X.: A new characterization of the product of $(L, M)$-fuzzy convex structures..J. Intel. Fuzzy Syst. 45 (2023), 4535-4545.
.

Files

Files Size Format View
Kybernetika_60-2024-2_2.pdf 549.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo