Title:
|
A new approach to construct uninorms via uninorms on bounded lattices (English) |
Author:
|
Xiu, Zhen-Yu |
Author:
|
Zheng, Xu |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
60 |
Issue:
|
2 |
Year:
|
2024 |
Pages:
|
125-149 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, on a bounded lattice $L$, we give a new approach to construct uninorms via a given uninorm $U^{*}$ on the subinterval $[0,a]$ (or $[b,1]$) of $L$ under additional constraint conditions on $L$ and $U^{*}$. This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided. (English) |
Keyword:
|
bounded lattices |
Keyword:
|
$t$-norms |
Keyword:
|
$t$-conorms |
Keyword:
|
uninorms |
MSC:
|
03B52 |
MSC:
|
03E72 |
MSC:
|
06B20 |
DOI:
|
10.14736/kyb-2024-2-0125 |
. |
Date available:
|
2024-06-03T09:35:35Z |
Last updated:
|
2024-06-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152411 |
. |
Reference:
|
[1] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices..Fuzzy Sets Syst. 408 (2021), 65-85. MR 4210984, |
Reference:
|
[2] Birkhoff, G.: Lattice theory. (Third Edition.).Amer. Math. Soc., Rhode Island 1967. MR 0227053 |
Reference:
|
[3] Baczyński, M., Jayaram, B.: Fuzzy Implications..Springer, Berlin 2008. Zbl 1293.03012 |
Reference:
|
[4] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices..In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica. |
Reference:
|
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inf. Sci. 367 (2016), 221-231. MR 3684677, |
Reference:
|
[6] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices..Kybernetika 53 (2017), 3, 394-417. MR 3684677, |
Reference:
|
[7] al., G. D. Çaylı et: Notes on locally internal uninorm on bounded lattices..Kybernetika 53 (2017), 5, 911-921. MR 3750111, |
Reference:
|
[8] Çaylı, G. D.: On a new class of $t$-norms and $t$-conorms on bounded lattices..Fuzzy Sets Syst. 332 (2018), 129-143. MR 3732255, |
Reference:
|
[9] Çaylı, G.D.: On the structure of uninorms on bounded lattices..Fuzzy Sets Syst. 357 (2019), 2-26. MR 3913056, |
Reference:
|
[10] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices..Inf. Sci. 488 (2019), 111-139. MR 3924420, |
Reference:
|
[11] Çaylı, G. D.: New methods to construct uninorms on bounded lattices..Int. J. Approx. Reason. 115 (2019), 254-264. MR 4018632, |
Reference:
|
[12] Çaylı, G. D.: Some methods to obtain $t$-norms and $t$-conorms on bounded lattices..Kybernetika 55 (2019), 2, 273-294. MR 4014587, |
Reference:
|
[13] Çaylı, G. D.: Uninorms on bounded lattices with the underlying $t$-norms and $t$-conorms..Fuzzy Sets Syst. 395 (2020), 107-129. MR 4109064, |
Reference:
|
[14] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices..Int. J. Gen. Syst. 50 (2021), 139-158. MR 4222196, |
Reference:
|
[15] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms..Int. J. Gen. Syst. 47 (2018), 772-793. MR 3867053, |
Reference:
|
[16] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.: Some further construction methods for uninorms on bounded lattices..Int. J. Gen. Syst. 52 (2023), 4, 414-442. MR 4589126, |
Reference:
|
[17] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof..Fuzzy Sets Syst. 104 (1999), 133-136. Zbl 0928.03060, MR 1685816, |
Reference:
|
[18] Baets, B. De, Mesiar, R.: Triangular norms on product lattices..Fuzzy Sets Syst. 104 (1999), 61-75. Zbl 0935.03060, MR 1685810, |
Reference:
|
[19] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices..Int. J. Approx. Reason. 110 (2019), 185-209. MR 3947797, |
Reference:
|
[20] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices..Fuzzy Sets Syst. 386 (2020), 77-94. MR 4073387, |
Reference:
|
[21] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Some new construction methods for $t$-norms on bounded lattices..Int. J. Gen. Syst. 48 (2019), 7, 775-791. MR 4001869, |
Reference:
|
[22] Ertuğrul, Ü., Yeşilyurt, M.: Ordinal sums of triangular norms on bounded lattices..Inf. Sci. 517 (2020), 198-216. MR 4050654, |
Reference:
|
[23] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices..Int. J. Intell. Syst. 30 (2015), 807-817. |
Reference:
|
[24] al., M. Grabisch et: Aggregation Functions..Cambridge University Press, 2009. |
Reference:
|
[25] al., M. Grabisch et: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes..Inf. Sci. 181 (2011), 23-43. MR 2737458, |
Reference:
|
[26] Höhle, U.: Commutative, residuated l-monoids..In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory (U. Höhle and E. P. Klement, eds.), Kluwer, Dordrecht 1995. MR 1345641 |
Reference:
|
[27] Hua, X. J., Zhang, H. P., Ouyang, Y.: Note on "Construction of uninorms on bounded lattices"..Kybernetika 57 (2021), 2, 372-382. MR 4273581, |
Reference:
|
[28] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators..Int. J. Approx. Reason. 136 (2021), 1-13. MR 4270087, |
Reference:
|
[29] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by $t$-norms and $t$-subconorms..Fuzzy Sets Syst. 427 (2022), 109-131. MR 4343692, |
Reference:
|
[30] Jenei, S., Baets, B. De: On the direct decomposability of $t$-norms on product lattices..Fuzzy Sets Syst. 139 (2003), 699-707. MR 2015162, |
Reference:
|
[31] Ji, W.: Constructions of uninorms on bounded lattices by means of $t$-subnorms and $t$-subconorms..Fuzzy Sets Syst. 403 (2021), 38-55. MR 4174507, |
Reference:
|
[32] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Syst. 261 (2015), 33-43. MR 3291484, |
Reference:
|
[33] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices..Fuzzy Sets Syst. 308 (2017), 54-71. MR 3579154, |
Reference:
|
[34] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for $t$-norms on subintervals to $t$-norms on bounded lattices..Kybernetika 55 (2019), 6, 976-993. MR 4077140, |
Reference:
|
[35] Karaçal, F., Kesicioğlu, M., Ertuğrul, Ü.: Generalized convex combination of triangular norms on bounded lattices..Int. J. Gen. Syst. 49 (2020), 3, 277-301. MR 4085740, |
Reference:
|
[36] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms..Fuzzy Sets Syst. 160 (2009), 3475-3502. MR 2563300, |
Reference:
|
[37] Menger, K.: Statistical metrics..Proc. Natl. Acad. Sci. USA 8 (1942), 535-537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535 |
Reference:
|
[38] Medina, J.: Characterizing when an ordinal sum of $t$-norms is a $t$-norm on bounded lattices..Fuzzy Sets Syst. 202 (2012), 75-88. MR 2934787, |
Reference:
|
[39] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice..Fuzzy Sets Syst. 395 (2020), 93-106. MR 4109063, |
Reference:
|
[40] Pedrycz, W., Hirota, K.: Uninorm-based logic neurons as adaptive and interpretable processing constructs..Soft Comput. 11 (2007), 1, 41-52. |
Reference:
|
[41] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153, |
Reference:
|
[42] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North-Holland, New York 1983. Zbl 0546.60010, MR 0790314 |
Reference:
|
[43] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities..Publ. Math. 8 (1961), 169-186. MR 0132939 |
Reference:
|
[44] Saminger, S.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets Syst. 157 (2006), 1403-1416. Zbl 1099.06004, MR 2226983, |
Reference:
|
[45] Saminger, S., Klement, E., Mesiar, R.: On extension of triangular norms on bounded lattices..Indag. Math. 19 (2008), 1, 135-150. MR 2466398, |
Reference:
|
[46] Wang, Z.: TL-filters of integral residuated $l$-monoids..Inf. Sci. 177 (2007), 887-896. MR 2287146, |
Reference:
|
[47] Xie, A. F., Li, S. J.: On constructing the largest and smallest uninorms on bounded lattices..Fuzzy Sets Syst. 386 (2020), 95-104. MR 4073391, |
Reference:
|
[48] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms..Fuzzy Sets Syst. 465 (2023), 108535. MR 4594058, |
Reference:
|
[49] Xiu, Z. Y., Jiang, Y. X.: New structures for uninorms on bounded lattices..J. Intell. Fuzzy Syst. 45 (2023), 2, 2019-2030. MR 4388021, |
Reference:
|
[50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Syst. 80 (1996), 111-120. Zbl 0871.04007, MR 1389951, |
Reference:
|
[51] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices..Int. J. Approx. Reason. 130 (2021), 22-49. MR 4188974, 10.1016/j.ijar.2020.12.008 |
Reference:
|
[52] al., H. P. Zhang et: A characterization of the classes Umin and Umax of uninorms on a bounded lattice..Fuzzy Sets Syst. 423 (2021), 107-121. MR 4310515, |
Reference:
|
[53] Zimmermann, H. J.: Fuzzy Set Theory and Its Applications. (Fourth Edition.).Kluwer, Aachen 2001. MR 1882395 |
. |