Previous |  Up |  Next

Article

Title: A new approach to construct uninorms via uninorms on bounded lattices (English)
Author: Xiu, Zhen-Yu
Author: Zheng, Xu
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 2
Year: 2024
Pages: 125-149
Summary lang: English
.
Category: math
.
Summary: In this paper, on a bounded lattice $L$, we give a new approach to construct uninorms via a given uninorm $U^{*}$ on the subinterval $[0,a]$ (or $[b,1]$) of $L$ under additional constraint conditions on $L$ and $U^{*}$. This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided. (English)
Keyword: bounded lattices
Keyword: $t$-norms
Keyword: $t$-conorms
Keyword: uninorms
MSC: 03B52
MSC: 03E72
MSC: 06B20
DOI: 10.14736/kyb-2024-2-0125
.
Date available: 2024-06-03T09:35:35Z
Last updated: 2024-06-03
Stable URL: http://hdl.handle.net/10338.dmlcz/152411
.
Reference: [1] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices..Fuzzy Sets Syst. 408 (2021), 65-85. MR 4210984,
Reference: [2] Birkhoff, G.: Lattice theory. (Third Edition.).Amer. Math. Soc., Rhode Island 1967. MR 0227053
Reference: [3] Baczyński, M., Jayaram, B.: Fuzzy Implications..Springer, Berlin 2008. Zbl 1293.03012
Reference: [4] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices..In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica.
Reference: [5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inf. Sci. 367 (2016), 221-231. MR 3684677,
Reference: [6] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices..Kybernetika 53 (2017), 3, 394-417. MR 3684677,
Reference: [7] al., G. D. Çaylı et: Notes on locally internal uninorm on bounded lattices..Kybernetika 53 (2017), 5, 911-921. MR 3750111,
Reference: [8] Çaylı, G. D.: On a new class of $t$-norms and $t$-conorms on bounded lattices..Fuzzy Sets Syst. 332 (2018), 129-143. MR 3732255,
Reference: [9] Çaylı, G.D.: On the structure of uninorms on bounded lattices..Fuzzy Sets Syst. 357 (2019), 2-26. MR 3913056,
Reference: [10] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices..Inf. Sci. 488 (2019), 111-139. MR 3924420,
Reference: [11] Çaylı, G. D.: New methods to construct uninorms on bounded lattices..Int. J. Approx. Reason. 115 (2019), 254-264. MR 4018632,
Reference: [12] Çaylı, G. D.: Some methods to obtain $t$-norms and $t$-conorms on bounded lattices..Kybernetika 55 (2019), 2, 273-294. MR 4014587,
Reference: [13] Çaylı, G. D.: Uninorms on bounded lattices with the underlying $t$-norms and $t$-conorms..Fuzzy Sets Syst. 395 (2020), 107-129. MR 4109064,
Reference: [14] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices..Int. J. Gen. Syst. 50 (2021), 139-158. MR 4222196,
Reference: [15] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms..Int. J. Gen. Syst. 47 (2018), 772-793. MR 3867053,
Reference: [16] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.: Some further construction methods for uninorms on bounded lattices..Int. J. Gen. Syst. 52 (2023), 4, 414-442. MR 4589126,
Reference: [17] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof..Fuzzy Sets Syst. 104 (1999), 133-136. Zbl 0928.03060, MR 1685816,
Reference: [18] Baets, B. De, Mesiar, R.: Triangular norms on product lattices..Fuzzy Sets Syst. 104 (1999), 61-75. Zbl 0935.03060, MR 1685810,
Reference: [19] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices..Int. J. Approx. Reason. 110 (2019), 185-209. MR 3947797,
Reference: [20] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices..Fuzzy Sets Syst. 386 (2020), 77-94. MR 4073387,
Reference: [21] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Some new construction methods for $t$-norms on bounded lattices..Int. J. Gen. Syst. 48 (2019), 7, 775-791. MR 4001869,
Reference: [22] Ertuğrul, Ü., Yeşilyurt, M.: Ordinal sums of triangular norms on bounded lattices..Inf. Sci. 517 (2020), 198-216. MR 4050654,
Reference: [23] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices..Int. J. Intell. Syst. 30 (2015), 807-817.
Reference: [24] al., M. Grabisch et: Aggregation Functions..Cambridge University Press, 2009.
Reference: [25] al., M. Grabisch et: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes..Inf. Sci. 181 (2011), 23-43. MR 2737458,
Reference: [26] Höhle, U.: Commutative, residuated l-monoids..In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory (U. Höhle and E. P. Klement, eds.), Kluwer, Dordrecht 1995. MR 1345641
Reference: [27] Hua, X. J., Zhang, H. P., Ouyang, Y.: Note on "Construction of uninorms on bounded lattices"..Kybernetika 57 (2021), 2, 372-382. MR 4273581,
Reference: [28] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators..Int. J. Approx. Reason. 136 (2021), 1-13. MR 4270087,
Reference: [29] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by $t$-norms and $t$-subconorms..Fuzzy Sets Syst. 427 (2022), 109-131. MR 4343692,
Reference: [30] Jenei, S., Baets, B. De: On the direct decomposability of $t$-norms on product lattices..Fuzzy Sets Syst. 139 (2003), 699-707. MR 2015162,
Reference: [31] Ji, W.: Constructions of uninorms on bounded lattices by means of $t$-subnorms and $t$-subconorms..Fuzzy Sets Syst. 403 (2021), 38-55. MR 4174507,
Reference: [32] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Syst. 261 (2015), 33-43. MR 3291484,
Reference: [33] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices..Fuzzy Sets Syst. 308 (2017), 54-71. MR 3579154,
Reference: [34] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for $t$-norms on subintervals to $t$-norms on bounded lattices..Kybernetika 55 (2019), 6, 976-993. MR 4077140,
Reference: [35] Karaçal, F., Kesicioğlu, M., Ertuğrul, Ü.: Generalized convex combination of triangular norms on bounded lattices..Int. J. Gen. Syst. 49 (2020), 3, 277-301. MR 4085740,
Reference: [36] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms..Fuzzy Sets Syst. 160 (2009), 3475-3502. MR 2563300,
Reference: [37] Menger, K.: Statistical metrics..Proc. Natl. Acad. Sci. USA 8 (1942), 535-537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535
Reference: [38] Medina, J.: Characterizing when an ordinal sum of $t$-norms is a $t$-norm on bounded lattices..Fuzzy Sets Syst. 202 (2012), 75-88. MR 2934787,
Reference: [39] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice..Fuzzy Sets Syst. 395 (2020), 93-106. MR 4109063,
Reference: [40] Pedrycz, W., Hirota, K.: Uninorm-based logic neurons as adaptive and interpretable processing constructs..Soft Comput. 11 (2007), 1, 41-52.
Reference: [41] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 313-334. Zbl 0136.39301, MR 0115153,
Reference: [42] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North-Holland, New York 1983. Zbl 0546.60010, MR 0790314
Reference: [43] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities..Publ. Math. 8 (1961), 169-186. MR 0132939
Reference: [44] Saminger, S.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets Syst. 157 (2006), 1403-1416. Zbl 1099.06004, MR 2226983,
Reference: [45] Saminger, S., Klement, E., Mesiar, R.: On extension of triangular norms on bounded lattices..Indag. Math. 19 (2008), 1, 135-150. MR 2466398,
Reference: [46] Wang, Z.: TL-filters of integral residuated $l$-monoids..Inf. Sci. 177 (2007), 887-896. MR 2287146,
Reference: [47] Xie, A. F., Li, S. J.: On constructing the largest and smallest uninorms on bounded lattices..Fuzzy Sets Syst. 386 (2020), 95-104. MR 4073391,
Reference: [48] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms..Fuzzy Sets Syst. 465 (2023), 108535. MR 4594058,
Reference: [49] Xiu, Z. Y., Jiang, Y. X.: New structures for uninorms on bounded lattices..J. Intell. Fuzzy Syst. 45 (2023), 2, 2019-2030. MR 4388021,
Reference: [50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Syst. 80 (1996), 111-120. Zbl 0871.04007, MR 1389951,
Reference: [51] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices..Int. J. Approx. Reason. 130 (2021), 22-49. MR 4188974, 10.1016/j.ijar.2020.12.008
Reference: [52] al., H. P. Zhang et: A characterization of the classes Umin and Umax of uninorms on a bounded lattice..Fuzzy Sets Syst. 423 (2021), 107-121. MR 4310515,
Reference: [53] Zimmermann, H. J.: Fuzzy Set Theory and Its Applications. (Fourth Edition.).Kluwer, Aachen 2001. MR 1882395
.

Files

Files Size Format View
Kybernetika_60-2024-2_1.pdf 501.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo