Previous |  Up |  Next

Article

Keywords:
convex $(L,M)$-fuzzy remote neighborhood operator; $(L,M)$-fuzzy convex structure; complete lattice
Summary:
In this paper, two kinds of remote neighborhood operators in $(L, M)$-fuzzy convex spaces are proposed, which are called convex $(L,M)$-fuzzy remote neighborhood operators. It is proved that these two kinds of convex $(L,M)$-fuzzy remote neighborhood operators can be used to characterize $(L, M)$-fuzzy convex structures. In addition, the lattice structures of two kinds of convex $ (L,M) $-fuzzy remote neighborhood operators are also given.
References:
[1] Fang, J. M., Yue, Y. L.: $L$-fuzzy closure systems. Fuzzy Sets Syst. 161 (2010), 1242-1252. DOI  | MR 2603067
[2] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislowe, M., Scott, D. S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge 2003. MR 1975381
[3] Höhle, U., Rodabaugh, S. E.: Mathematics of fuzzy sets. Logic, topology, and measure theory. Handbooks of Fuzzy Sets, 1999. MR 1788902
[4] Lassak, M.: On metric $B$-convexity for which diameters of any set and its hull are equal. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 969-975. MR 0461286
[5] Maruyama, Y.: Lattice-valued fuzzy convex geometry. RIMS Kokyuroku 1641 (2009), 22-37.
[6] Munkres, J. R.: Topology: A First Course. Prentice-Hall, Englewood Cliffs, NJ 1975. MR 0464128
[7] Pang, B.: Bases and subbases in $(L,M)$-fuzzy convex spaces-. Comput. Appl. Math. 39 (2020), 41. DOI  | MR 4059965
[8] Pang, B.: Hull operators and interval operators in $(L,M)$-fuzzy convex spaces. Fuzzy Sets Syst. 405 (2021), 106-127. DOI  | MR 4191313
[9] Pang, B., Shi, F.-G.: Strong inclusion orders between $L$-subsets and its applications in $L$-convex spaces. Quaestion. Math. 41 (2018), 8, 1021-1043. DOI  | MR 3885942
[10] Rosa, M. V.: On fuzzy topology fuzzy convexity spaces and fuzzy local convexity. Fuzzy Sets Syst. 62 (1994), 97-100. DOI  | MR 1259888
[11] Shi, F. G., Xiu, Z. Y.: A new approach to the fuzzification of convex structures. J. Appl. Math. 2014 (2014), 1-12. DOI  | MR 3259199
[12] Shi, F. G., Xiu, Z.-Y.: $(L,M)$-fuzzy convex structures. J. Nonlinear Sci. Appl. 10 (2017), 3655-3669. DOI  | MR 3680307
[13] Soltan, V. P.: $d$-convexity in graphs. (Russian). Dokl. Akad. Nauk SSSR 272 (1983), 535-537. MR 0723776
[14] Šostak, A. P.: On a fuzzy topological structure Rend. Circ. Mat. Palermo 11 (1985), 89-103. MR 0897975
[15] Vel, M.L.J. Van De: Theory of Convex Structures. North-Holland, Amsterdam 1993. DOI  | MR 1234493
[16] Wang, G.-J.: Theory of topological molecular lattices. Fuzzy Sets Syst. 47 (1992), 351-376. DOI  | MR 1166284
[17] Xiu, Z. Y., Pang, B.: Base axioms and subbase axioms in $M$-fuzzifying convex spaces. Iran. J. Fuzzy Syst. 15 (2018), 75-87. MR 3840022
[18] Yang, H., Li, E. Q.: A new approach to interval operators in $L$-convex spaces. J. Nonlinear Convex Anal. 21 (2020), 12, 2705-2714. MR 4194712
[19] Yang, H., Pang, B.: Fuzzy points based betweenness relations in $L$-convex spaces. Filomat. 35 (2021), 10, 3521-3532. DOI  | MR 4365455
[20] Yang, X. F., Li, S. G.: Net-theoretical convergence in $ (L,M) $-fuzzy cotopological spaces. Fuzzy Sets Syst. 204 (2012), 53-65. DOI  | MR 2950795
[21] Yue, Y. L., Fang, J. M.: Categories isomorphic to the Kubiak-Šostak extension of TML. Fuzzy Sets Syst. 157 (2006), 832-842. DOI  | MR 2223563
[22] Zhao, H., Hu, X., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb: Concave $(L,M)$-fuzzy interior operators and $(L,M)$-fuzzy hull operators. Comput. Appl. Math. 40 (2021), 301. DOI  | MR 4338783
[23] Zhao, H., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb, Chen, G. X.: On separation axioms in $(L, M)$-fuzzy convex structures. J. Intel. Fuzzy Syst. 40 (2021), 5, 8765-8773. DOI  | MR 4338783
[24] Zhao, H., Song, Q. L., Sayed, O. R., El-Sanousy, E., Sayed, Y. H.Ragheb, Chen, G. X.: Corrigendum to "On $(L, M)$-fuzzy convex structures". Filomat. 35 (2021), 5, 1687-1691. DOI  | MR 4364030
[25] Zhao, H., Jia, L. Y., Chen, G. X.: Product and coproduct structures of $(L, M)$-fuzzy hull operators. J. Intel. Fuzzy Syst. 44 (2023), 3515-3526. DOI  | MR 0743509
[26] Zhao, H., Zhao, Y. J., Zhang, S. Y.: On $(L,N)$-fuzzy betweenness relations. Filomat. 37 (2023), 11, 3559-3573. DOI  | MR 4573824
[27] Zhao, H., Hu, X., Chen, G. X.: A new characterization of the product of $(L, M)$-fuzzy convex structures. J. Intel. Fuzzy Syst. 45 (2023), 4535-4545. DOI 
Partner of
EuDML logo