Previous |  Up |  Next

Article

Title: Degrees of compatible $L$-subsets and compatible mappings (English)
Author: Shi, Fu-Gui
Author: Sun, Yan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 2
Year: 2024
Pages: 172-196
Summary lang: English
.
Category: math
.
Summary: Based on a completely distributive lattice $L$, degrees of compatible $L$-subsets and compatible mappings are introduced in an $L$-approximation space and their characterizations are given by four kinds of cut sets of $L$-subsets and $L$-equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible $L$-subsets and compatible degrees of $L$-subsets. Finally, the notion of complete $L$-sublattices is introduced and it is shown that the product of complete $L$-sublattices is still a complete $L$-sublattice and the compatible degree of an $L$-subset is a complete $L$-sublattice. (English)
Keyword: $L$-approximation spaces
Keyword: compatible $L$-subsets
Keyword: compatible mappings
Keyword: complete $L$-sublattices
MSC: 06B75
MSC: 06D10
MSC: 06D72
DOI: 10.14736/kyb-2024-2-0172
.
Date available: 2024-06-03T09:40:34Z
Last updated: 2024-06-03
Stable URL: http://hdl.handle.net/10338.dmlcz/152414
.
Reference: [1] Ajmal, N., Thomas, K. V.: Fuzzy lattices..Inf. Sci. 79 (1994), 271-291. MR 1282402,
Reference: [2] Bandler, W., Kohout, L. J.: Semantics of implication operators and fuzzy relational products..Int. J. Man-Machine Studies 12 (1980), 89-116. MR 0576477,
Reference: [3] Bělohlávek, R.: Fuzzy Relational Systems. Foundations and Principles..Kluwer Academic Publishers, New York 2002.
Reference: [4] Bělohlávek, R., Dvořák, J., Outrata, J.: Fast factorization by similarity in formal concept analysis of data with fuzzy attributes..J. Comput. Syst. Sci. 73 (2007), 6, 1012-1022. MR 2332731,
Reference: [5] Berry, V., Nicolas, F.: Improved parameterized complexity of the maximum agreement subtree and maximum compatible tree problems..IEEE/ACM Trans. Comput. Biol. Bioinform. 3 (2006), 3, 289-302.
Reference: [6] Birkhoff, G.: Lattice Theory..AMS, 1948. Zbl 0537.06001, MR 0029876
Reference: [7] Demirci, M.: Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations, Part I: Fuzzy functions and their applications..Int. J. Gen. Syst. 32 (2003), 123-155. MR 1967126,
Reference: [8] Dong, Y. Y., Shi, F.-G.: $L$-fuzzy sub-effect algebras..Mathematics 9 (2021), 14, 1596.
Reference: [9] Fang, J. M.: Residuated Lattices and Fuzzy Sets..Science Press (in Chinese), 2012.
Reference: [10] Ganapathy, G., Warnow, T. J.: Approximating the complement of the maximum compatible subset of leaves of trees..Lecture Notes Comput. Sci. 2462 (2002), 122-134. MR 2091821,
Reference: [11] Ganter, B., Wille, R.: Formal Concept Analysis-Mathematical Foundations..Springer, 1999. MR 1707295,
Reference: [12] Gao, Y., Pang, B.: Subcategories of the category of $\top$-convergence spaces..Hacet. J. Math. Stat. 53 (2024), 1, 88-106. MR 4714280,
Reference: [13] Gégény, D., Radeleczki, S.: Rough L-fuzzy sets: Their representation and related structures..Int. J. Approx. Reason. 142 (2022), 1-12. MR 4343710,
Reference: [14] Goguen, J. A.: $L$-fuzzy sets..J. Math. Anal. Appl. 18 (1967), 145-174. Zbl 0145.24404, MR 0224391,
Reference: [15] Goguen, J. A.: Logic of inexact concepts..Synthese 19 (1968), 325-373.
Reference: [16] Gottwald, S.: Treatise on Many-Valued Logics..Research Studies Press, Baldock 2001. MR 1856623
Reference: [17] Huang, H. L., Shi, F.-G.: $L$-fuzzy numbers and their properties..Inf. Sci. 178 (2008), 1141-1151. MR 2369556,
Reference: [18] Klawonn, F.: Fuzzy points, fuzzy relations and fuzzy functions..In: Discovering World with Fuzzy Logic (Novak, Perfilieva, eds.), Physica-Verlag, 2000, pp. 431-453. MR 1858110
Reference: [19] Klawonn, F., Castro, J. L.: Similarity in fuzzy reasoning..Mathware Soft Comput. 2 (1995), 197-228. MR 1395432
Reference: [20] Konecny, J., Krupka, M.: Complete relations on fuzzy complete lattices..Fuzzy Sets Syst. 320 (2017), 1, 64-80. MR 3650347,
Reference: [21] Li, H. Y., Shi, F.-G.: Degrees of fuzzy compactness in $L$-fuzzy topological spaces..Fuzzy Sets Syst., 161 (2010) 988-1001. MR 2592437,
Reference: [22] Li, J., Shi, F.-G.: $L$-fuzzy convexity induced by $L$-convex fuzzy sublattice degree..Iran. J. Fuzzy Syst. 14 (2017), 5, 83-102. MR 3751405
Reference: [23] Liang, C. Y., Shi, F.-G.: Degree of continuity for mappings of ($L$,$M$)-fuzzy topological spaces..J. Intell. Fuzzy Syst. 27 (2014), 2665-2677. MR 3279817,
Reference: [24] Pang, B.: Bases and subbases in ($L$,$M$)-fuzzy convex spaces..J. Comput. Appl. Math. 39 (2020), 41. MR 4059965,
Reference: [25] Pang, B.: Convergence structures in $M$-fuzzifying convex spaces..Quaest. Math. 43 (2020), 11, 1541-1561. MR 4181551,
Reference: [26] Pang, B.: Quantale-valued convex structures as lax algebras..Fuzzy Sets Syst.473 (2023), 108737. MR 4652787,
Reference: [27] Pang, B.: Fuzzy convexities via overlap functions..IEEE T. fuzzy Syst. 31 (2023), 4, 1071-1082.
Reference: [28] Pawlak, Z.: Rough sets and fuzzy sets..Fuzzy Sets Syst. 17 (1985), 99-102. MR 0808468,
Reference: [29] Shen, Y. T., Xiong, Y. J., Xia, W., Soatto, S.: Towards backward-compatible representation learning..In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6368-6377.
Reference: [30] Shi, F.-G.: Theory of $L_\alpha$-nest sets and $L_\beta$-nest sets and their applications..Fuzzy Syst. Math. 4 (1995), 65-72. MR 1384670,
Reference: [31] Shi, F.-G.: $L$-fuzzy relation and $L$-fuzzy subgroup..J. Fuzzy Math. 8 (2000), 491-499. MR 1767444
Reference: [32] Shi, F.-G., Xin, X.: $L$-fuzzy subgroup degrees and $L$-fuzzy normal subgroup degrees..J. Adv. Res. Pure Math. 3 (2011), 92-108. MR 2859291,
Reference: [33] Shi, Y., Pang, B., Baets, B. De: Fuzzy structures induced by fuzzy betweenness relations..Fuzzy Sets Syst. 466 (2023), 108443. MR 4594083,
Reference: [34] Sun, Y., Mi, J. S., Chen, J. K., Liu, W.: A new fuzzy multi-attribute group decision-making method with generalized maximal consistent block and its application in emergency management..Knowl. Based Syst. 215 (2021), 106594.
Reference: [35] Sun, Y., Shi, F.-G.: Representations of L-fuzzy rough approximation operators..Inf. Sci. 645 (2023), 119324.
Reference: [36] Tepav\u{c}ević, A., Trajkovski, D.: $L$-fuzzy lattices: an introduction..Fuzzy Sets Syst. 123 (2001), 209-216. MR 1849406,
Reference: [37] Wang, G. J.: Theory of topological molecular lattices..Fuzzy Sets Syst. 47 (1992), 351-376. MR 1166284,
Reference: [38] Xiu, Z. Y., Li, Q.-H., Pang, B.: Fuzzy convergence structures in the framework of L-convex spaces..Iran. J. Fuzzy Syst. 17 (2020), 4, 139-150. MR 4155855
Reference: [39] Yao, Y. Y.: Three-way granular computing, rough sets, and formal concept analysis..Int. J. Approx. Reason. 116 (2020), 106-125. MR 4031434,
Reference: [40] Ying, M.: A new approach for fuzzy topology (I)..Fuzzy Sets Syst. 39 (3) (1991), 303-321. MR 1095905,
Reference: [41] Yuan, B., Wu, W.: Fuzzy ideals on a distributive lattice..Fuzzy Sets Syst. 35 (1990), 231-240. MR 1050603,
Reference: [42] Zadeh, L. A.: Fuzzy sets..Inform. Control. 8 (1965), 338-353. Zbl 0942.00007, MR 0219427,
Reference: [43] Zadeh, L. A.: Similarity relations and fuzzy orderings..Inf. Sci. 3 (1971) 177-200. MR 0297650,
Reference: [44] Zadeh, L. A.: The concept of a linguistic variable and its application to approximation reasoning I..Inf. Sci. 8 (1975), 3, 199-251. MR 0386369,
Reference: [45] Zhang, L., Pang, B.: Monoidal closedness of the category of $L$-semiuniform convergence spaces..Hacet. J. Math. Stat. 51 (2022), 5, 1348-1370. MR 4484516,
Reference: [46] Pang, L. Zhang andB.: Convergence structures in $(L,M)$-fuzzy convex spaces..Filomat 37 (2023), 9, 2859-2877. MR 4573748,
Reference: [47] Zhang, L., Pang, B., Li, W.: Subcategories of the category of stratified $(L,M)$-semiuniform convergence tower spaces..Iran. J. Fuzzy Syst. 20 (2023), 4, 179-192. MR 3932538
Reference: [48] Zhang, L., Pang, B.: A new approach to lattice-valued convergence groups via $\top$-filters..Fuzzy Sets Syst. 455 (2023), 198-221. MR 4543117,
Reference: [49] Zhao, F. F., Pang, B.: Equivalence among $L$-closure (interior) operators, $L$-closure (interior) systems and $L$-enclosed (internal) relations..Filomat 36 (2022), 3, 979-1003. MR 4424058,
.

Files

Files Size Format View
Kybernetika_60-2024-2_3.pdf 483.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo