[2] Antontsev, S., Miranda, F., Santos, L.:
Blow-up and finite time extinction for $p(x,t)$-curl systems arising in electromagnetism. J. Math. Anal. Appl. 440 (2016), 300-322 \99999DOI99999 10.1016/j.jmaa.2016.03.045 .
DOI 10.1016/j.jmaa.2016.03.045 |
MR 3479601 |
Zbl 1339.35060
[3] Aramaki, J.:
$L^p$ theory for the div-curl system. Int. J. Math. Anal., Ruse 8 (2014), 259-271 \99999DOI99999 10.12988/ijma.2014.4112 .
MR 3188605
[4] Bahrouni, A., Repovš, D.:
Existence and nonexistence of solutions for $p(x)$-curl systems arising in electromagnetism. Complex Var. Elliptic Equ. 63 (2018), 292-301 \99999DOI99999 10.1080/17476933.2017.1304390 .
MR 3764762 |
Zbl 1423.35124
[5] Barbu, V.:
Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, Berlin (2010),\99999DOI99999 10.1007/978-1-4419-5542-5 .
MR 2582280 |
Zbl 1197.35002
[6] Cimrák, I., Keer, R. Van:
Level set method for the inverse elliptic problem in nonlinear electromagnetism. J. Comput. Phys. 229 (2010), 9269-9283 \99999DOI99999 10.1016/j.jcp.2010.08.038 .
MR 2733153 |
Zbl 1207.78045
[7] Dunford, N., Schwartz, J. T.:
Linear Operators. I. General Theory. Pure and Applied Mathematics 7. Interscience Publishers, New York (1958),\99999MR99999 0117523 .
MR 0117523 |
Zbl 0084.10402
[8] u, J. Franc\accent23:
Monotone operators: A survey directed to applications to differential equations. Appl. Math. 35 (1990), 257-301 \99999DOI99999 10.21136/AM.1990.104411 .
MR 1065003 |
Zbl 0724.47025
[9] Gajewski, H., Gröger, K., Zacharias, K.:
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38. Akademie, Berlin (1974), German \99999MR99999 0636412 .
MR 0636412 |
Zbl 0289.47029
[10] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.:
Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006),\99999DOI99999 10.1093/acprof:oso/9780198566656.001.0001 .
MR 2289481 |
Zbl 1107.76001
[11] Janíková, E., Slodička, M.:
Fully discrete linear approximation scheme for electric field diffusion in type-II superconductors. J. Comput. Appl. Math. 234 (2010), 2054-2061 \99999DOI99999 10.1016/j.cam.2009.08.063 .
MR 2652398 |
Zbl 1195.82105
[12] László, S. C.: The Theory of Monotone Operators with Applications. Babes-Bolyai University, Budapest (2011) .
[13] Xiang, M., Wang, F., Zhang, B.:
Existence and multiplicity for $p(x)$-curl systems arising in electromagnetism. J. Math. Anal. Appl. 448 (2017), 1600-1617 \99999DOI99999 10.1016/j.jmaa.2016.11.086 .
MR 3582298 |
Zbl 1358.35181