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Abstract. In this paper we propose a new concept of quasi-uniform monotonicity weaker
than the uniform monotonicity which has been developed in the study of nonlinear operator
equation Au = b. We prove that if A is a quasi-uniformly monotone and hemi-continuous
operator, then A−1 is strictly monotone, bounded and continuous, and thus the Galerkin
approximations converge. Also we show an application of a quasi-uniformly monotone and
hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin
approximations to the solution of steady-state electromagnetic p-curl systems.

Keywords: well-posedness; uniform monotonicity; S-property; p-curl systems

MSC 2020 : 35D30, 35A15, 47H05, 65N30 78M10, 78M30

1. Introduction

The theory of monotone operators is a powerful tool in the study of nonlinear

operator equations such as nonlinear elliptic partial differential equations. It is well

known that a sufficient condition for the well-posedness and convergence of Galerkin

approximations to the solution of a nonlinear operator equation is the uniform mono-

tonicity and hemi-continuity, see [5], [9], [12], [14]. However, among nonlinear op-

erator equations which are important in the real-life applications, there are many

equations without uniform monotonicity or exhibiting difficulties in the proof of co-

ercivity and S-property, see [5].

The goal of this paper is to introduce a new concept of a quasi-uniformly monotone

operator weaker than the well-known uniformly monotone one, to show some of its

nice properties and then its application to the electromagnetic p-curl systems.
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For the nonlinear operator equation, if the quasi-uniform monotonicity of the

operator is obtained, we can directly prove the well-posedness and convergence of

Galerkin approximations without the proof of coercivity and S-property. Therefore,

the method proposed in this paper is more efficient in the sense that the proof of

well-posedness and convergence of Galerkin approximations is simpler than that of

previous methods in the case that the proof of coercivity and S-property is difficult

or much more complicated.

Firstly we propose the definition of a quasi-uniformly monotone operator, which

enables us to study nonlinear operator equations without uniform monotonicity, and

prove the strict monotonicity, S-property and coercivity. This leads us to obtaining

the well-posedness and convergence of Galerkin approximations for nonlinear op-

erator equations with quasi-uniform monotonicity and hemi-continuity. Moreover,

we show that some nonlinear differential operators which play important role in

the real-life applications such as fluid mechanics and electromagnetics possess the

quasi-uniform monotonicity and hemi-continuity.

Next, in this paper we use the quasi-uniform monotonicity and hemi-continuity of

the operator to prove the well-posedness and convergence of Galerkin approximations

to the solution of a steady-state electromagnetic p-curl system.

Steady-state Maxwell’s equations are usually stated as

(1.1) curlH = J, curlE = 0, divD = ̺, divB = 0.

In the nonlinear media, if the relations E = λ(|J |)J , B = µH hold provided that

the permeability is constant, then from (1.1) it follows that

curl (λ(|curlH |)curlH) = 0, divH = 0,

and if the relations H = λ(|B|)B,B = curlA hold, then

curl(λ(|curlA|)curlA) = J, divA = 0.

Here E, H are the electric and magnetic field, B is the magnetic flux density, D is

the electric displacement, J is the current density, A is the magnetic vector potential,

ε is the electric permittivity, µ is the magnetic permeability, ̺ is the electric charge

density, and λ : R+ → R+ is a given function.

Therefore, steady-state Maxwell’s equations in nonlinear media can be considered

as the quasi-linear PDE

(1.2) curl(λ(|curlu(x)|)curlu(x)) = f(x), div u(x) = 0, x ∈ Ω,

where Ω is a bounded simply connected three-dimensional domain.
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In recent years, great attention has been focused on the study of Maxwell’s equa-

tions in nonlinear media, see [2], [1], [13], [4], [6], [10], [11]. In [6], the authors have

established the level set method for the inverse problem to the equation (1.2) in the

case of λ(s) = d + csb/(ab + sb), a, b, c, d > 0. In [11], the authors studied a lin-

ear fully discrete approximation scheme for the electric field and the convergence

and error estimation when the relation between the electric field and the current

density is λ(s) = sn. More recently, there have been reported theoretical results

for the equation (1.2), which is called the electromagnetic p-curl system, in the

case of λ(s) = sp−2, f = f(x, u) and its some variations including p(x), p(x, t),

see [2], [1], [13], [4]. In [4], the existence and non-existence of solution for p(x)-

curl systems with the source λg(x, u) + µf(x, u) have been studied in the case of

6/5 < p(x) < 3. In [2], [1], the unique existence and finite time extinction of the

solution of p(x, t)-curl , p-curl systems with a nonlinear source have been studied in

the case of 6/5 < p(x, t), p, respectively. In [13], the authors proved the existence and

multiplicity of solution of p(x)-curl systems having nonlinear source and other terms.

In this paper, we prove that the p-curl operator is quasi-uniformly monotone and

hemi-continuous if 1 < p < 2. Based on it, we next show the well-posedness

and convergence of Galerkin approximations to the solution of electromagnetic

p-curl systems.

The paper is organized as follows. In Section 2, we introduce the definition of

a quasi-uniformly monotone operator and prove some its properties. Moreover, we

give some examples of the quasi-uniformly monotone operators. In Section 3, we

give the weak formulation of the problem (1.2) and consider some functional spaces

and their norms. In Section 4, we prove that the operator defined by electromagnetic

p-curl systems is quasi-uniformly monotone if 1 < p < 2 and locally Hölder contin-

uous if 1 < p. Since the locally Hölder continuous operator is hemi-continuous, we

show the local Hölder continuity in this paper.

2. Properties of a quasi-uniformly monotone operator

Let us introduce the concept of a quasi-uniformly monotone operator.

Definition 2.1. Let V be the Banach space, V ∗ the conjugate space of V , A :

V → V ∗ an operator, 〈·, ·〉 duality pairing in V ∗ × V , R = (−∞,∞), R+ = [0,∞),

R++ = (0,∞).

If µ : R+ × R++ → R+ is continuous, strictly increasing in the first variable, not

increasing in the second variable, with

∀ t ∈ R++, µ(0, t) = 0, µ(∞, t) = ∞, lim
t→0

µ(t, t) = 0, lim
t→∞

µ(t, t) = ∞
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and

〈Au −Av, u− v〉 > ‖u− v‖µ(‖u− v‖, ‖u‖+ ‖v‖) ∀u, v ∈ V,

then the operator A is called a quasi-uniformly monotone.

From Definition 2.1 it is obvious that the following implications for an opera-

tor hold:

uniformly monotone ⇒ quasi-uniformly monotone ⇒ strictly monotone.

Definition 2.2 ([9], III. Definition 1.4). Let V be a Banach space, V ∗ the

conjugate space of V , A : V → V ∗ an operator. Then we say that the opera-

tor A has S-property provided the following holds: if un tends to u weakly and

〈Aun −Au, un − u〉 → 0, then un → u.

For another definition of S-property, we refer to [8], [14].

Now let us consider the operator equation

(2.1) Au = b, b ∈ V ∗,

and the Galerkin approximation equation

(2.2) un ∈ Vn, 〈Aun, v〉 = 〈b, v〉 ∀ v ∈ Vn.

Here Vn is finite dimensional subspace of the space V .

Lemma 2.1. If the operator A is quasi-uniformly monotone, then it is coercive

and has the S-property.

P r o o f. From Definition 2.1 it follows, that if u 6= 0, then

〈Au, u〉

‖u‖
=

〈Au −A0 +A0, u〉

‖u‖
=

〈Au −A0, u− 0〉

‖u‖
+

〈A0, u〉

‖u‖

>
‖u− 0‖µ(‖u− 0‖, ‖u‖+ ‖0‖)

‖u‖
− ‖A0‖

= µ(‖u‖, ‖u‖)− ‖A0‖ → ∞ as ‖u‖ → ∞.

Therefore, A is coercive.

Now let us show the S-property. Let

un
w
→u, 〈Aun − u, un − u〉 → 0, un, u ∈ V as n → ∞.

It is clear that

∃ c ∈ R++, ‖u‖ 6 c, ‖un‖ 6 c ∀n ∈ N.
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This together with Definition 2.1 yields that

〈Aun − u, un − u〉 > ‖u− un‖µ(‖u− un‖, ‖u‖+ ‖un‖) > ‖u− un‖µ(‖u− un‖, 2c),

which implies that ‖u− un‖µ(‖u− un‖, 2c) → 0 as n → ∞.

On the other hand, by Definition 2.1 the function f(s) := sµ(s, 2c) is continu-

ous and strictly increasing in R+, and f(0) = 0, f(∞) = ∞. Hence, there exists

the inverse function g(t) : R+ → R+ such that g(0) = 0, g(∞) = ∞. More-

over, it is also continuous and strictly increasing. Let an := f(‖u − un‖). Then

g(an) = ‖u− un‖ → 0 as n → ∞, since an → 0 as n → ∞. Thus A has the S-

property. �

Lemma 2.2 ([5], [9], [12], [14]). Let an operatorA : V → V ∗ be strictly monotone,

coercive, hemi-continuous and have the S-property. Let V be a real separable reflex-

ive Banach space and Vn, n = 1, 2, . . . , be finite dimensional subspaces of V such

that V1 ⊂ V2 ⊂ . . . and let
∞⋃

n=1
Vn be dense in V . Then there exists A−1 : V ∗ → V

such that A−1 is strictly monotone, bounded and continuous. Moreover, a unique

solution un to (2.2) converges to a unique solution u to the equation (2.1) as n → ∞.

From the two lemmas above, we immediately have the following theorem.

Theorem 2.1. Let A : V → V ∗be quasi-uniformly monotone and hemi-conti-

nuous, and V , Vn satisfy the assumption of Lemma 2.2. Then the result of Lemma 2.2

continues to hold.

We close this section with some examples of quasi-uniformly monotone and locally

Hölder continuous operators. Let Ω be a bounded domain of Rd, V a subspace of

the Sobolev space W 1
p (Ω), 1 < p < 2, λ ∈ C(R+). Let the operator A be defined as

〈Au, v〉 =

∫

Ω

λ(|∇u|)∇u · ∇v dΩ ∀u, v ∈ V.

If λ(s) satisfies one of the following relations, then the operator A is quasi-uniformly

monotone and locally Hölder continuous.

⊲ Gas flow through packed beds in the industrial furnaces, see [5].

λ(s) =
1

(a2 + bs)1/2 + a
, a > 0, b > 0.

⊲ Laminar flow of non-Newtonian fluid, see [5].

λ(s) = (a+ bs)c−2, a > 0, b > 0, 1 < c < 2.
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⊲ Porous flow of fluid, see [14].

λ(s) = asc−2, a > 0, 1 < c < 2.

⊲ Transonic flow of compressible ideal fluid gas, see [5].

λ(s) =
(
1 +

s2

2c

)
−c

, 0 < c < 1/2.

3. Weak formulation of the equation (1.2)

Before we give the weak formulation of the equation (1.2), we introduce the no-

tations to be used later. Let Ω be a bounded simply connected domain with C0,1

boundary Γ = ∂Ω in R
3, (f)Ω, (f)Γ the integrals of f over Ω and Γ. We denote the

outward normal and tangential unit vector at x ∈ Γ by n(x), τ(x), respectively. Let

us put

γnu = (u · n)n, γtu = n× u, γτu = u− γnu.

Let p > 1, 1/p+ 1/q = 1. We define Sobolev type spaces and norms as

W k,p(Ω) = {v ∈ Lp(Ω);∇αv ∈ Lp(Ω), |α| 6 k},

W p(div0,Ω) = {u ∈ [Lp(Ω)]3 : curlu ∈ [Lp(Ω)]3, div u = 0},

W p
n (Ω) = {u ∈ W p(div0,Ω): γnu|Γ = 0},

W p
t (Ω) = {u ∈ W p(div0,Ω): γtu|Γ = 0},

‖u‖curl, p = ‖curlu‖p,Ω.

Then we obtain from Corollaries 2.8 and 2.11 of [3] that for all u ∈ [W k+1,p(Ω)]3,

‖u‖k+1,p,Ω 6 c(‖curlu‖k,p,Ω + ‖div u‖k,p,Ω + ‖γtu‖k+1/q,p,Γ),

‖u‖k+1,p,Ω 6 c(‖curlu‖k,p,Ω + ‖div u‖k+1,p,Ω + ‖γnu‖k+1/q,p,Γ).

Here the constant c is independent of u. Setting k = 0, it holds that

‖u‖1,p,Ω 6 c‖u‖curl, p ∀u ∈ W p
n(Ω) ∪W p

t (Ω).

So the norm ‖·‖curl,p in subspacesW
p
n(Ω), W

p
t (Ω) of the spaceW

1,p(Ω) is equivalent

to the norm of the space W 1,p(Ω). Using Lemma II.1.25 of [9] and Theorems I.6.12,

II.3.23 of [7], we have the following lemma.

Lemma 3.1. The spaces W p
n (Ω), W

p
t (Ω) are separable reflexive Banach spaces

with norm ‖·‖curl,p and this norm is equivalent to that of the space W
1,p(Ω).
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It is well known that for u, v ∈ [C1(Ω)]3

(div (u× v))Ω = (n · (u × v))Γ,

div (u× v) = v · curlu− u · curl v,

n · (u× v) = u · (v × n) = v · (n× u),

n · (u× v) = −u · γtv = v · γtu,

u · γtv = (γnu+ γτu) · γtv = γτu · γtv,

(v · curlu)Ω − (u · curl v)Ω = (v · γtu)Γ = −(u · γtv)Γ = −(γτu · γtv)Γ = (γτv · γtu)Γ.

Replacing u by λ(|curl u|)curlu in the above relations, we get

(3.1) (v · curl(λ(|curlu|)curlu))Ω − (λ(|curl u|)curlu · curl v)Ω

= −(λ(|curlu|)γτcurlu · γtv)Γ

= (λ(|curlu|)γtcurlu · γτv)Γ ∀u ∈ [C2(Ω)]3, v ∈ [C1(Ω)]3.

Here we use the boundary conditions

γnu = 0, λ(|curlu|)γtcurlu = g on Γ,(3.2)

γtu = 0 on Γ.(3.3)

From the equation (3.1), if u is the solution of (1.2), (3.2), then we have

u ∈ W p
n(Ω), (λ(|curlu|)(curlu)·(curl v))Ω = (f ·v)Ω−(g·γtv)Γ ∀ v ∈ C1(Ω)3∩W p

n (Ω)

and if u is the solution of (1.2) and (3.3), then

u ∈ W p
t (Ω), (λ(|curl u|)(curlu) · (curl v))Ω = (f · v)Ω ∀ v ∈ C1(Ω)3 ∩W p

t (Ω).

Now, if we define the operator A as

〈Au, v〉 = (λ(|curl u|)(curlu) · (curl v))Ω,

then the solution of the problem (1.2), (3.2) or (1.2), (3.3) satisfies the variation

equation

(3.4) u ∈ W p
n(Ω), 〈Au, v〉 = (f · v)Ω − (g · γtv)Γ ∀ v ∈ W p

n (Ω),

or

(3.5) u ∈ W p
t (Ω), 〈Au, v〉 = (f · v)Ω ∀ v ∈ W p

t (Ω).

In (3.4), (3.5), it is assumed that the given functions f, g are as smooth as the bounds

(f · v)Ω, (g · γtv)Γ.
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4. Quasi-uniform monotonicity and local Hölder continuity of A

In the end of Section 2 we gave some examples of quasi-uniformly monotone and

hemi-continuous operators. Here we want to show that the operator A defined

by (4.1) below is quasi-uniformly monotone and locally Hölder continuous.

Theorem 4.1. Let Ω ⊂ R
3 be a simply connected bounded domain with C0,1

boundary. Let us define the operator A as

(4.1) 〈Au, v〉 = (|curlu|p−2(curlu) · (curl v))Ω, 1 < p < ∞,

for u, v ∈ W (:= W p
n(Ω) or W

p
t (Ω)). Then the operator A is locally Hölder contin-

uous. Moreover, it is quasi-uniformly monotone if 1 < p < 2, strongly monotone if

p = 2 and uniformly monotone if p > 2.

Since the local Hölder continuity implies the hemi-continuity, from Theorems 2.1

and 4.1 we have immediately:

Corollary 4.1. The weak formulation (3.4) (or (3.5)) of the steady-state electro-

magnetic p-curl systems (1.2), (3.2) (or (1.2), (3.3)) is well-posed and the Galerkin

approximations converge in the norm of the space W p
n(Ω) (or W

p
t (Ω)).

R em a r k 4.1. If f = f(x, u) is a nonlinear function in the equation (1.2), our

result also holds under certain assumptions, for example, the monotonicity and hemi-

continuity of the operator Fu = −f(x, u).

P r o o f of Theorem 4.1. Now let u, v ∈ R
3, u 6= 0, v 6= 0, p > 1. The following

inequality is well known, see [1]: for all u, v ∈ R
3

(4.2) ∃ cp > 0, (|u|p−2u−|v|p−2v)·(u−v) >

{
cp|u− v|2(|u|+ |v|)p−2, 1 < p < 2,

cp|u− v|p, p > 2.

In this paper, we explain how the constant cp is related to p in more detail. To this

end we use the following inequalities without proof: for 1 < p < ∞, r > 0, s > 0,

t > 0,

(4.3) (sp−1 − tp−1)(s− t) > ηp(s− t)2 ×

{
(s+ t)p−2 if 1 < p < 2,

(sp−2 + tp−2) if 2 6 p,

|sp−1 − tp−1| 6 ξp(s+ t)|s− t|mp ,
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where

mp :=

{
p− 1 if 1 < p 6 2,

1 if 2 6 p,
ξp(r) :=

{
1 if 1 < p 6 2,

ξ̃pr
p−2 if 2 6 p,

(4.4)

1 6 ξ̃p 6 p, 0 < ηp 6

{
p− 1 if 1 < p < 2,

1/2 if 2 6 p,

while

ẽr(s+ t)r 6 sr + tr 6 er(s+ t)r,(4.5)

er :=

{
1 if 1 6 r,

21−r if 0 < r 6 1,
ẽr :=

{
21−r if 1 6 r,

1 if 0 < r 6 1.

From the inequality (4.5), it follows that

sp−2 + tp−2 > ẽp−2(s+ t)p−2 if 2 6 p.

Combining the previous inequality with (4.3), we get

(sp−1 − tp−1)(s− t) > η̃p(s− t)2(s+ t)p−2,(4.6)

η̃p := ηp ×

{
1 if 1 < p 6 3,

23−p if 3 > p.

Since the function f(x) = x−r, r > 0, is convex, we obtain

(s+ t

2

)
−r

6
1

2
(s−r + t−r), s, t > 0,

and therefore,

(4.7) s−r + t−r > 21+r(s+ t)−r, r, s, t > 0.

We use (4.6) to get

(4.8) (|u|p−2u− |v|p−2v) · (u− v)

= |u|p−2|u|2 + |v|p−2|v|2 − u · v(|u|p−2 + |v|p−2)

= (|u|p−1 − |v|p−1)(|u| − |v|) + (|u|p−2 + |v|p−2)(|u||v| − u · v)

> η̃p(|u| − |v|)2(|u|+ |v|)p−2 + (|u|p−2 + |v|p−2)(|u||v| − u · v).
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Considering (4.5) and (4.7) yields that

|u|p−2 + |v|p−2 > ẽp−2(|u|+ |v|)p−2 if p− 2 > 0,

|u|p−2 + |v|p−2 > 2p−1(|u|+ |v|)p−2 if − 1 < p− 2 < 0,

which can be rewritten as

(4.9) |u|p−2 + |v|p−2 > ˜̃ηp(|u|+ |v|)p−2, ˜̃ηp =





2p−1 if 1 < p < 2,

1 if 2 6 p 6 3,

23−p if 3 < p.

Connecting (4.8) and (4.9), we obtain that

(|u|p−2u− |v|p−2v) · (u− v)

> [η̃p(|u| − |v|)2 + ˜̃ηp(|u||v| − u · v)](|u|+ |v|)p−2

> min
{
η̃p,

1

2
˜̃ηp
}
[(|u| − |v|)2 + 2(|u||v| − u · v)](|u|+ |v|)p−2

= min
{
η̃p,

1

2
˜̃ηp
}
|u− v|2(|u|+ |v|)p−2.

As a result, we have that for all p > 1, and u, v ∈ R
3, u 6= 0, v 6= 0,

(4.10) (|u|p−2u− |v|p−2v) · (u− v) >
˜̃̃
ηp|u− v|2(|u|+ |v|)p−2,

where
˜̃̃
ηp := min

{
η̃p,

1

2
˜̃ηp
}
> 0.

On the other hand, from (4.3) and (4.4), it follows that for p > 2

||u|p−2u− |v|p−2v| = ||u|p−2(u− v) + (|u|p−2 − |v|p−2)v|

6 |u|p−2|u− v|+ ||u|p−2 − |v|p−2| |v|,

||u|p−2 − |v|p−2| |v| 6 |u|p−2||u| − |v||+ ||u|p−1 − |v|p−1|

6 |u|p−2||u| − |v||+ ξ̃p(|u|+ |v|)p−2||u| − |v||.

These two inequalities imply that

||u|p−2u− |v|p−2v| 6 |u|p−2|u− v|+ |u|p−2||u| − |v||+ ξp(|u|+ |v|)p−2|u− v|

6 2(|u|+ |v|)p−2|u− v|+ ξ̃p(|u|+ |v|)p−2|u− v|.

Hence,

(4.11) ||u|p−2u− |v|p−2v| 6 (2 + ξ̃p)(|u|+ |v|)p−2|u− v| if p > 2.
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If 1 < p < 2, then by (4.3), (4.4), (4.5), we get

||u|p−2u− |v|p−2v|2 = (|u|p−1 − |v|p−1)2 + 2|u|p−2|v|p−2(|u||v| − u · v)

6 (||u| − |v||p−1)2 + 2(|u||v|)p−2(|u||v| − u · v)

6 [(|u| − |v|)2]p−1 + 2(|u||v|)p−2(|u||v| − u · v)p−1(2|u||v|)2−p

= [(|u| − |v|)2]p−1 + 24−2p[2(|u||v| − u · v)]p−1

6 24−2p{[(|u| − |v|)2]p−1 + [2(|u||v| − u · v)]p−1}

6 24−2p22−p[(|u| − |v|)2 + 2(|u||v| − u · v)]p−1

= 26−3p|u− v|2(p−1).

Therefore,

(4.12) ||u|p−2u− |v|p−2v| 6 23−3p/2|u− v|p−1 if 1 < p < 2.

From (4.11), (4.12), we conclude that for all p > 1 and all u, v ∈ R
3, u 6= 0, v 6= 0,

(4.13) ||u|p−2u− |v|p−2v| 6
˜̃
ξp|u− v|mp(|u|+ |v|)p−1−mp ,

where mp is from (4.4) and

˜̃
ξp :=

{
23−3p/2 if 1 < p < 2,

2 + ξ̃p if 2 6 p.

Now let us prove the quasi-uniform monotonicity and local Hölder continuity of A

defined by (4.1).

Since from (4.10)

˜̃̃
ηp|u− v|2 6 (|u|p−2u− |v|p−2v) · (u− v)(|u|+ |v|)2−p,

we can easily get that for 1 < p < 2

˜̃̃
η p/2
p

∫

Ω

|u − v|p dΩ 6

∫

Ω

[(|u|p−2u− |v|p−2v) · (u− v)]p/2(|u|+ |v|)p(2−p)/2 dΩ,

and furthermore by the Hölder inequality with the pair (p/2, (2− p)/2)

˜̃̃
η p/2
p

∫

Ω

|u− v|p dΩ

6

[∫

Ω

(|u|p−2u− |v|p−2v) · (u− v) dΩ

]p/2(∫

Ω

(|u|+ |v|)p dΩ

)p(2−p)/(2p)

6

[∫

Ω

(|u|p−2u− |v|p−2v) · (u− v) dΩ

]p/2
(‖u‖p,Ω + ‖v‖p,Ω)

p(2−p)/2.
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Now replacing u, v by curlu, curl v, respectively, and using the fact that the norm

‖·‖curl,p is equivalent to the norm of W
1,p(Ω) in the spaces W p

n(Ω),W
p
t (Ω), we have

˜̃̃
η p/2
p ‖u− v‖pcurl,p 6 (〈Au −Av, u− v〉)p/2(‖u‖curl,p + ‖v‖curl,p)

p(2−p)/2.

The previous inequality implies immediately that for all 1 < p < 2,

〈Au−Av, u− v〉 >
˜̃̃
ηp‖u− v‖2curl,p(‖u‖curl,p + ‖v‖curl,p)

p−2

= ‖u− v‖curl,pµp(‖u− v‖curl,p, ‖u‖curl,p + ‖v‖curl,p) ∀u, v ∈ W,

where

µp(s, t) = c̃pst
p−2, c̃p =

˜̃̃
ηp > 0 for 1 < p < 2.

Hence the operator A is quasi-uniformly monotone if 1 < p < 2.

On the other hand, the strong monotonicity for p = 2 and the uniform one for

p > 2 follow directly from the fact that by (4.2)

〈Au −Av, u− v〉 > cp‖u− v‖pcurl,p if p > 2.

Now it remains to show the local Hölder continuity of A. From (4.13) it follows

that for 1/p+ 1/q = 1

(4.14)

∣∣∣∣
∫

Ω

(|u|p−2u− |v|p−2v)w dΩ

∣∣∣∣

6
˜̃
ξp

∫

Ω

|u− v|mp(|u|+ |v|)p−1−mp |w| dΩ

6
˜̃
ξp‖w‖p,Ω

[∫

Ω

|u− v|qmp(|u|+ |v|)q(p−1−mp) dΩ

]1/q
.

For p > 2, setting

p1 :=
p

mpq
, p2 :=

p

(p− 1−mp)q

and using the Hölder inequality with a pair (p1, p2), we get

(4.15)

[∫

Ω

|u− v|qmp(|u|+ |v|)q(p−1−mp) dΩ

]1/q

6

(∫

Ω

|u− v|p dΩ

)mp/p(∫

Ω

(|u|+ |v|)p dΩ

)(p−1−mp)/p

6 ‖u− v‖
mp

p,Ω(‖u‖p,Ω + ‖v‖p,Ω)
p−1−mp .
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Since p−mp − 1 = 0 for 1 < p 6 2 and q(p− 1) = p, we have

(4.16)

[∫

Ω

|u− v|qmp(|u|+ |v|)q(p−1−mp) dΩ

]1/q

=

(∫

Ω

|u− v|p dΩ

)1/q

= ‖u− v‖
p/q
p,Ω = ‖u− v‖

mp

p,Ω.

Inserting (4.15), (4.16) into (4.14), replacing u, v by curlu, curl v and applying the

dual argument, we obtain that for p > 1

‖Au−Av‖∗ 6
˜̃
ξp‖u− v‖

mp

curl,p(‖u‖curl,p + ‖v‖curl,p)
p−1−mp ∀u, v ∈ W,

which implies the local Hölder continuity of A. Note that ‖·‖∗ is the norm of W
∗

which is the conjugate space of W . �
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