Previous |  Up |  Next

Article

Keywords:
measure-valued solution; compressible Euler system
Summary:
We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.
References:
[1] Baba, H. Al, Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S.: Nonuniqueness of admissible weak solutions to the Riemann problem for the full Euler system in two dimensions. SIAM J. Math. Anal. 52 (2020), 1729-1760. DOI 10.1137/18M1190872 | MR 4083343 | Zbl 1437.35474
[2] Y. Brenier, C. De Lellis, L. Székelyhidi, Jr.: Weak-strong uniqueness for measure-valued solutions. Commun. Math. Phys. 305 (2011), 351-361. DOI 10.1007/s00220-011-1267-0 | MR 2805464 | Zbl 1219.35182
[3] Březina, J.: Existence of a measure-valued solutions to a complete Euler system for a perfect gas. RIMS Kokyuroku 2020 (2020), Article ID 2144, 24 pages Available at http://hdl.handle.net/2433/254987
[4] Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system. J. Math. Soc. Japan 70 (2018), 1227-1245. DOI 10.2969/jmsj/77337733 | MR 3868717 | Zbl 1408.35134
[5] Březina, J., Feireisl, E., Novotný, A.: Stability of strong solutions to the Navier-StokesFourier system. SIAM J. Math. Anal. 52 (2020), 1761-1785. DOI 10.1137/18M1223022 | MR 4083344 | Zbl 1439.35365
[6] Chiodaroli, E., Lellis, C. De, Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68 (2015), 1157-1190. DOI 10.1002/cpa.21537 | MR 3352460 | Zbl 1323.35137
[7] Chiodaroli, E., Feireisl, E., Kreml, O., Wiedemann, E.: $\mathcal A$-free rigidity and applications to the compressible Euler system. Ann. Mat. Pura Appl. (4) 196 (2017), 1557-1572. DOI 10.1007/s10231-016-0629-9 | MR 3673680 | Zbl 1382.35201
[8] DiPerna, R. J., Majda, A. J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987), 667-689. DOI 10.1007/BF01214424 | MR 0877643 | Zbl 0626.35059
[9] Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 141, 20 pages. DOI 10.1007/s00526-016-1089-1 | MR 3567640 | Zbl 1360.35143
[10] Fjordholm, U. S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numerica 25 (2016), 567-679. DOI 10.1017/S0962492916000088 | MR 3509212 | Zbl 1382.76001
[11] Frisch, U.: Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9781139170666 | MR 1428905 | Zbl 0832.76001
[12] Gallenmüller, D., Wiedemann, E.: On the selection of measure-valued solutions for the isentropic Euler system. J. Differ. Equations 271 (2021), 979-1006. DOI 10.1016/j.jde.2020.09.028 | MR 4154934 | Zbl 07283605
[13] Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28 (2015), 3873-3890. DOI 10.1088/0951-7715/28/11/3873 | MR 3424896 | Zbl 1336.35291
[14] Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115 (1991), 329-365. DOI 10.1007/BF00375279 | MR 1120852 | Zbl 0754.49020
[15] Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59-90. DOI 10.1007/BF02921593 | MR 1274138 | Zbl 0808.46046
[16] Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S.: Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. Nonlinearity 33 (2020), 6517-6540. DOI 10.1088/1361-6544/aba3b2 | MR 4164684 | Zbl 07278317
[17] Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Grundlehren der Mathematischen Wissenschaften 258. Springer, New York (1994). DOI 10.1007/978-1-4612-0873-0 | MR 1301779 | Zbl 0807.35002
[18] L. Székelyhidi, Jr., E. Wiedemann: Young measures generated by ideal incompressible fluid flows. Arch. Ration. Mech. Anal. 206 (2012), 333-366. DOI 10.1007/s00205-012-0540-5 | MR 2968597 | Zbl 1256.35072
[19] Wiedemann, E.: Weak-strong uniqueness in fluid dynamics. Partial Differential Equations in Fluid Mechanics London Mathematical Society Lecture Note Series 452. Cambridge University Press, Cambridge (2018), 289-326. MR 3838055 | Zbl 1408.35158
Partner of
EuDML logo