[2] Aouadi, S. M., Bernardi, C., Satouri, J.:
Mortar spectral element discretization of the Stokes problem in axisymmetric domains. Numer. Methods Partial Differ. Equations 30 (2014), 44-73.
DOI 10.1002/num.21794 |
MR 3149400 |
Zbl 1299.76049
[6] Beavers, S. G., Joseph, D. D.:
Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967), 197-207.
DOI 10.1017/S0022112067001375
[7] Bernardi, C., Rebollo, T. Chacón, Hecht, F., Mghazli, Z.:
Mortar finite element discretization of a model coupling Darcy and Stokes equations. ESAIM, Math. Model. Numer. Anal. 42 (2008), 375-410.
DOI 10.1051/m2an:2008009 |
MR 2423791 |
Zbl 1138.76044
[16] Costabel, M., Dauge, M.:
Computation of resonance frequencies for Maxwell equations in non-smooth domains. Topics in Computational Wave Propagation: Direct and Inverse Problems Springer, Berlin (2003), 125-161.
DOI 10.1007/978-3-642-55483-4_4 |
MR 2032869 |
Zbl 1116.78002
[21] Girault, V., Rivière, B.:
DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47 (2009), 2052-2089.
DOI 10.1137/070686081 |
MR 2519594 |
Zbl 1406.76082
[23] Mabrouki, Y., Aouadi, S. M., Satouri, J.:
Spectral discretization of Darcy equations coupled with Stokes equations by vorticity-velocity-pressure formulation. Numer. Methods Partial Differ. Equations 33 (2017), 1628-1651.
DOI 10.1002/num.22157 |
MR 3683526 |
Zbl 1394.65156