[2] Chen, Y., Chen, G., Hu, Z.:
Spanning 3-ended trees in $k$-connected $K_{1,4}$-free graphs. Sci. China, Math. 57 (2014), 1579-1586 \99999DOI99999 10.1007/s11425-014-4817-z .
MR 3229223 |
Zbl 1299.05034
[3] Chen, Y., Ha, P. H., Hanh, D. D.:
Spanning trees with at most 4 leaves in $K_{1,5}$-free graphs. Discrete Math. 342 (2019), 2342-2349 \99999DOI99999 10.1016/j.disc.2019.05.005 .
MR 3954055 |
Zbl 1418.05050
[4] Diestel, R.:
Graph Theory. Graduate Texts in Mathematics 173. Springer, Berlin (2005),\99999DOI99999 10.1007/978-3-662-53622-3 .
MR 2159259 |
Zbl 1074.05001
[5] Ha, P. H., Hanh, D. D.:
Spanning trees of connected $K_{1,t}$-free graphs whose stems have a few leaves. Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2373-2383 \99999DOI99999 10.1007/s40840-019-00812-x .
MR 4089649 |
Zbl 1437.05044
[6] Ha, P. H., Hanh, D. D., Loan, N. T.:
Spanning trees with few peripheral branch vertices. Taiwanese J. Math. 25 (2021), 435-447.
DOI 10.11650/tjm/201201
[7] Kano, M., Kyaw, A., Matsuda, H., Ozeki, K., Saito, A., Yamashita, T.:
Spanning trees with a bounded number of leaves in a claw-free graph. Ars Combin. 103 (2012), 137-154 \99999MR99999 2907328 .
MR 2907328 |
Zbl 1265.05100
[8] Kano, M., Yan, Z.:
Spanning trees whose stems have at most $k$ leaves. Ars Combin. 117 (2014), 417-424 \99999MR99999 3243859 .
MR 3243859 |
Zbl 1349.05056
[9] Kano, M., Yan, Z.:
Spanning trees whose stems are spiders. Graphs Comb. 31 (2015), 1883-1887 \99999DOI99999 10.1007/s00373-015-1618-2 .
MR 3417201 |
Zbl 1330.05041
[10] Kyaw, A.:
Spanning trees with at most 3 leaves in $K_{1,4}$-free graphs. Discrete Math. 309 (2009), 6146-6148 \99999DOI99999 10.1016/j.disc.2009.04.023 .
MR 2552650 |
Zbl 1183.05019
[11] Kyaw, A.:
Spanning trees with at most $k$ leaves in $K_{1,4}$-free graphs. Discrete Math. 311 (2011), 2135-2142 \99999DOI99999 10.1016/j.disc.2011.06.025 .
MR 2825657 |
Zbl 1235.05033
[12] Vergnas, M. Las:
Sur une propriété des arbres maximaux dans un graphe. C. R. Acad. Sci., Paris, Sér. A 272 (1971), 1297-1300 French.
MR 0277423 |
Zbl 0221.05053
[13] Maezawa, S.-i., Matsubara, R., Matsuda, H.:
Degree conditions for graphs to have spanning trees with few branch vertices and leaves. Graphs Comb. 35 (2019), 231-238 \99999DOI99999 10.1007/s00373-018-1998-1 .
MR 3898387 |
Zbl 1407.05053
[14] Matthews, M. M., Sumner, D. P.:
Hamiltonian results in $K_{1,3}$-free graphs. J. Graph Theory 8 (1984), 139-146 \99999DOI99999 10.1002/jgt.3190080116 .
MR 0732027 |
Zbl 0536.05047
[15] Ozeki, K., Yamashita, T.:
Spanning trees: A survey. Graphs Comb. 27 (2011), 1-26 \99999DOI99999 10.1007/s00373-010-0973-2 .
MR 2746831 |
Zbl 1232.05055
[16] Tsugaki, M., Zhang, Y.:
Spanning trees whose stems have a few leaves. Ars Comb. 114 (2014), 245-256.
MR 3203267 |
Zbl 1324.05025
[17] Win, S.:
On a conjecture of Las Vergnas concerning certain spanning trees in graphs. Result. Math. 2 (1979), 215-224 \99999DOI99999 10.1007/BF03322958 .
MR 0565381 |
Zbl 0432.05035
[18] Yan, Z.:
Spanning trees whose stems have a bounded number of branch vertices. Discuss. Math., Graph Theory 36 (2016), 773-778 \99999DOI99999 10.7151/dmgt.1885 .
MR 3518139 |
Zbl 1339.05212