[5] Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.:
Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation. SIAM J. Math. Anal. 51 (2019), 3714-3749.
DOI 10.1137/19M1249679 |
MR 4002719 |
Zbl 1428.35492
[9] Chowdury, A., Kedziora, D. J., Ankiewicz, A., Akhmediev, N.:
Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90 (2014), Article ID 032922.
DOI 10.1103/PhysRevE.90.032922
[11] Christ, M.:
Power series solution of a nonlinear Schrödinger equation. Mathematical Aspects of Nonlinear Dispersive Equations Annals of Mathematics Studies 163. Princeton University Press, Princeton (2007), 131-155.
DOI 10.1515/9781400827794.131 |
MR 2333210 |
Zbl 1142.35084
[13] Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Proceedings of International Conference on Wavelets and Applications 2002 New Delhi Allied Publishers, Delhi (2003), 99-140.
[18] Guo, Z., Oh, T.:
Non-existence of solutions for the periodic cubic NLS below $L^2$. Int. Math. Res. Not. 2018 (2018), 1656-1729.
DOI 3801473 |
MR 3801473 |
Zbl 1410.35199
[19] Hardy, G. H., Wright, E. M.:
An Introduction to the Theory of Numbers. Clarendon Press, New York (1979).
MR 0568909 |
Zbl 0423.10001
[21] Kang, Z.-Z., Xia, T.-C., Ma, W.-X.:
Riemann-Hilbert approach and $N$-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber. Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages.
DOI 10.1186/s13662-019-2121-5 |
MR 3950782 |
Zbl 07057006
[22] Karpman, V. I.:
Stabilization of soliton instabilities by higher order dispersion: Fourth- order nonlinear Schrödinger type equations. Phys. Rev. E 53 (1996), 1336-1339.
DOI 10.1103/PhysRevE.53.R1336 |
MR 1372681
[26] Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N.:
Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137 (2009), 3869-3883.
DOI 10.1090/S0002-9939-09-09968-7 |
MR 2529896 |
Zbl 1183.42013
[29] Oh, T., Wang, Y.:
On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53-84.
MR 3896809 |
Zbl 1438.35397
[33] Sedletsky, Y. V., Gandzha, I. S.:
A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein-Gordon equation for slowly modulated wave trains. Nonlinear Dyn. 94 (2018), 1921-1932.
DOI 10.1007/s11071-018-4465-x
[36] Yue, Y., Huang, L., Chen, Y.:
Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages.
DOI 10.1016/j.cnsns.2020.105284 |
MR 4099385 |
Zbl 1454.35358