[2] Cao, Z.:
Introduction to Diophantine Equations. Harbin Institute of Technology Press, Harbin (1989), Chinese.
MR 1029025 |
Zbl 0849.11029
[6] He, G.:
A note on the exponential Diophantine equation $(a^m-1)(b^n-1)=x^2$. Pure Appl. Math. 27 (2011), 581-585 Chinese.
MR 2906439 |
Zbl 1249.11056
[8] Luo, J.:
On the Diophantine equation $\frac{a^{n}x^{m}\pm1}{a^{n}x\pm1}=y^{n}+1$. J. Sichuan Univ., Nat. Sci. Ed. 36 (1999), 1022-1026 Chinese.
MR 1746962 |
Zbl 0948.11016
[10] Szalay, L.:
On the Diophantine equation $(2^n-1)(3^n-1)=x^2$. Publ. Math. 57 (2000), 1-9.
MR 1771666 |
Zbl 0961.11013
[12] Waall, R. W. van der:
On the Diophantine equations $x^2+x+1=3v^2$, $x^3-1=2y^2$, $x^3+1=2y^2$. Simon Stevin 46 (1972), 39-51.
MR 0316374 |
Zbl 0246.10011
[13] Walsh, P. G.:
On Diophantine equations of the form $(x^n-1)(y^m-1)=z^2$. Tatra Mt. Math. Publ. 20 (2000), 87-89.
MR 1845448 |
Zbl 0992.11029