Previous |  Up |  Next

Article

Keywords:
elementary method; Diophantine equation; positive integer solution
Summary:
Let $p$ be an odd prime. By using the elementary methods we prove that: (1) if $2\nmid x$, $p\equiv \pm 3\pmod 8,$ the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution except when $p=3$ or $p$ is of the form $p=2a_{0}^{2}+1$, where $a_{0}>1$ is an odd positive integer. (2) if $2\nmid x$, $2\mid y$, $y\neq 2,4,$ then the Diophantine equation $(2^{x}-1)(p^{y}-1)=2z^{2}$ has no positive integer solution.
References:
[1] Cao, Z.: On the Diophantine equation $x^{2n}-Dy^{2}=1$. Proc. Am. Math. Soc. 98 (1986), 11-16. DOI 10.1090/S0002-9939-1986-0848864-4 | MR 0848864 | Zbl 0596.10016
[2] Cao, Z.: Introduction to Diophantine Equations. Harbin Institute of Technology Press, Harbin (1989), Chinese. MR 1029025 | Zbl 0849.11029
[3] Cohn, J. H. E.: The Diophantine equation $(a^n-1)(b^n-1)=x^2$. Period. Math. Hung. 44 (2002), 169-175. DOI 10.1023/A:1019688312555 | MR 1918683 | Zbl 1012.11024
[4] Guo, X.: A note on the Diophantine equation $(a^n-1)(b^n-1)=x^2$. Period. Math. Hung. 66 (2013), 87-93. DOI 10.1007/s10998-012-6964-8 | MR 3018202 | Zbl 1274.11089
[5] Hajdu, L., Szalay, L.: On the Diophantine equation $(2^n-1)(6^n-1)=x^2$ and $(a^n-1)(a^{kn}-1)=x^2$. Period. Math. Hung. 40 (2000), 141-145. DOI 10.1023/A:1010335509489 | MR 1805312 | Zbl 0973.11015
[6] He, G.: A note on the exponential Diophantine equation $(a^m-1)(b^n-1)=x^2$. Pure Appl. Math. 27 (2011), 581-585 Chinese. MR 2906439 | Zbl 1249.11056
[7] Keskin, R.: A note on the exponential Diophantine equation $(a^n-1)(b^n-1)=x^2$. Proc. Indian Acad. Sci., Math. Sci. 129 (2019), Article ID 69, 12 pages. DOI 10.1007/s12044-019-0520-x | MR 3993857 | Zbl 1422.11071
[8] Luo, J.: On the Diophantine equation $\frac{a^{n}x^{m}\pm1}{a^{n}x\pm1}=y^{n}+1$. J. Sichuan Univ., Nat. Sci. Ed. 36 (1999), 1022-1026 Chinese. MR 1746962 | Zbl 0948.11016
[9] Noubissie, A., Togbé, A.: A note on the exponential Diophantine equation $(a^n-1)\*(b^n-1)=x^2$. Ann. Math. Inform. 50 (2019), 159-165. DOI 10.33039/ami.2019.11.002 | MR 4048812 | Zbl 07174847
[10] Szalay, L.: On the Diophantine equation $(2^n-1)(3^n-1)=x^2$. Publ. Math. 57 (2000), 1-9. MR 1771666 | Zbl 0961.11013
[11] Tang, M.: A note on the exponential Diophantine equation $(a^m-1)(b^n-1)=x^2$. J. Math. Res. Expo. 6 (2011), 1064-1066. DOI 10.3770/j.issn:1000-341X.2011.06.014 | MR 2896318 | Zbl 1265.11065
[12] Waall, R. W. van der: On the Diophantine equations $x^2+x+1=3v^2$, $x^3-1=2y^2$, $x^3+1=2y^2$. Simon Stevin 46 (1972), 39-51. MR 0316374 | Zbl 0246.10011
[13] Walsh, P. G.: On Diophantine equations of the form $(x^n-1)(y^m-1)=z^2$. Tatra Mt. Math. Publ. 20 (2000), 87-89. MR 1845448 | Zbl 0992.11029
[14] Yuan, P., Zhang, Z.: On the Diophantine equation $(a^n-1)(b^n-1)=x^2$. Publ. Math. 80 (2012), 327-331. DOI 10.5486/PMD.2012.5004 | MR 2943006 | Zbl 1263.11045
Partner of
EuDML logo