Previous |  Up |  Next

Article

Keywords:
complex delayed system; uncertain; stabilization; intermittent control; switched
Summary:
In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results.
References:
[1] Arefi, M. M.: Adaptive robust stabilization of Rossler system with time-varying mismatched parameters via scalar input. J. Comput. Nonlinear Dynamics 11 (2016), 041024-6. DOI 10.1115/1.4033383
[2] Cai, S., Zhou, P., Liu, Z.: Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control. Chaos 24 (2014), 033102. DOI 10.1063/1.4886186 | MR 3404400
[3] Carr, T. W., Schwartz, I. B.: Controlling the unstable steady state in a multimode laser. Phys. Rev. E 51 (1995), 5109-5111. DOI 10.1103/physreve.51.5109
[4] Fang, T., Sun, J.: Stability analysis of complex-valued impulsive system. IET Control Theory Appl. 7 (2013), 1152-1159. DOI 10.1049/iet-cta.2013.0116 | MR 3113222
[5] Fang, T., Sun, J.: Stability of complex-valued impulsive and switching system and application to the Lü system. Nonlinear Analysis: Hybrid Systems 14 (2014), 38-46. DOI 10.1016/j.nahs.2014.04.004 | MR 3228049
[6] Fowler, A. C., Gibbon, J. D., McGuinness, M. J.: The complex Lorenz equations. Physica D 4 (1982), 139-163. DOI 10.1016/0167-2789(82)90057-4 | MR 0653770 | Zbl 1194.37039
[7] Han, Q. L.: New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control. Physics Lett. A 360 (2007), 563-569. DOI 10.1016/j.physleta.2006.08.076 | Zbl 1236.93072
[8] Huang, T. W., Li, C. D., Liu, X.: Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos 18 (2008), 033122. DOI 10.1063/1.2967848 | MR 2478154
[9] Li, C. D., Liao, X. F., Huang, T. W.: Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17 (2007), 013103. DOI 10.1063/1.2430394 | MR 2319024
[10] Li, N., Sun, H., Zhang, Q: Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control. IET Control Theory Appl. 159 (2013), 1725-1736. DOI 10.1049/iet-cta.2013.0159 | MR 3115117
[11] Liang, Y., Wang, X.: Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods. Physica A 395 (2014), 434-444. DOI 10.1016/j.physa.2013.10.002 | MR 3133676
[12] Liu, X., Chen, T.: Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Automat. Control 60 (2015), 3316-3321. DOI 10.1109/tac.2015.2416912 | MR 3432701
[13] Liu, X., Chen, T.: Synchronization of nonlinear coupled networks via a periodically intermittent pinning control. IEEE Trans. Neural Networks Learning Systems 26 (2015), 113-126. DOI 10.1109/TNNLS.2014.2311838 | MR 3449567
[14] Lu, J., Ho, D. W. C., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46 (2010), 1215-1221. DOI 10.1016/j.automatica.2010.04.005 | MR 2877227
[15] Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dynamics 71 (2013), 241-257. DOI 10.1007/s11071-012-0656-z | MR 3010577
[16] Mahmoud, E. E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Computer Modelling 55 (2012), 1951-1962. DOI 10.1016/j.mcm.2011.11.053 | MR 2899141
[17] Mahmoud, G. M., Mahmoud, E. E., Arafa, A. A.: On modified time delay hyperchaotic complex Lü system. Nonlinear Dynamics 80 (2015), 855-869. DOI 10.1007/s11071-015-1912-9 | MR 3324303
[18] Mahmoud, G. M., Bountis, T., Mahmoud, E. E.: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurcation Chaos 17 (2007), 4295-4308. DOI 10.1142/s0218127407019962 | MR 2394229
[19] Morgül, Ö.: On the stability of delayed feedback controllers. Phys. Lett. A 314 (2003), 278-285. DOI 10.1016/s0375-9601(03)00866-1 | MR 2008693
[20] Ning, C. Z., Haken, H.: Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41 (1990), 3826-3837. DOI 10.1103/physreva.41.3826
[21] Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196. DOI 10.1103/physrevlett.64.1196 | MR 1041523 | Zbl 0964.37502
[22] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. DOI 10.1103/physrevlett.64.821 | MR 1038263 | Zbl 1098.37553
[23] Qiu, J., Cheng, L., X, Chen, Lu, J., He, H.: Semi-periodically intermittent control for synchronization of switched complex networks:a mode-dependent average dwell time approach. Nonlinear Dynamics {\mi83} (2016), 1757-1771. DOI 10.1007/s11071-015-2445-y | MR 3449506
[24] Starrett, J.: Control of chaos by occasional bang-bang. Phys. Rev. E 67 (2003), 036203. DOI 10.1103/PhysRevE.67.036203
[25] Sun, W., Wang, S., Wang, G., Wu, Y.: Lag synchronization via pinning control between two coupled networks. Nonlinear Dynamics 79 (2015), 2659-2666. DOI 10.1007/s11071-014-1838-7 | MR 3317469
[26] Wang, X., He, Y.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372 (2008), 435-441. DOI 10.1016/j.physleta.2007.07.053
[27] Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19 (2009), 013120. DOI 10.1063/1.3071933 | MR 2513764
[28] Yang, Z., Xu, D.: Stability analysis and design of impulsive control systems with time delay. IEEE Trans. Automat. Control 52 (2007), 1448-1454. DOI 10.1109/tac.2007.902748 | MR 2342720
[29] Zhang, D. W., Han, Q. L., Jia, X. C.: Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers. IEEE Trans. Cybernet. 45 (2015), 1511-1524. DOI 10.1109/tcyb.2014.2354421 | MR 1859200
[30] Zhang, D. W., Han, Q. L., Jia, X. C.: Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Systems 273 (2015), 26-48. DOI 10.1016/j.fss.2014.12.015 | MR 3347269
[31] Zheng, S.: Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling. Nonlinear Dynamics 67 (2012), 2621-2630. DOI 10.1007/s11071-011-0175-3 | MR 2881569 | Zbl 1243.93042
[32] Zheng, S.: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems. Nonlinear Dynamics 74 (2013), 957-967. DOI 10.1007/s11071-013-1015-4 | MR 3127104 | Zbl 1306.34069
[33] Zheng, S.: Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays. ISA Trans. 58 (2015), 20-26. DOI 10.1016/j.isatra.2015.05.016
[34] Zheng, S.: Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling. J. Franklin Inst. 353 (2016), 1460-1477. DOI 10.1016/j.jfranklin.2016.02.006 | MR 3472559
[35] Zheng, S.: Further Results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems. Complexity 21 (2016), 131-142. DOI 10.1002/cplx.21641 | MR 3508409
[36] Zochowski, M.: Intermittent dynamical control. Physica D 145 (2000), 181-190. DOI 10.1016/s0167-2789(00)00112-3
Partner of
EuDML logo