Previous |  Up |  Next

Article

Keywords:
efficiency of LASSO; penalty estimators; preliminary test; Stein-type estimator; ridge estimator; L$_2$-risk function
Summary:
In the development of efficient predictive models, the key is to identify suitable predictors for a given linear model. For the first time, this paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of domination of LASSO over all the R-estimators (except the ridge R-estimator) is the interval around the origin of the parameter space. Finally, we observe that the L$_2$-risk of the restricted R-estimator equals the lower bound on the L$_2$-risk of LASSO. Our conclusions are based on L$_2$-risk analysis and relative L$_2$-risk efficiencies with related tables and graphs.
References:
[1] A, A. Belloni, Chernozhukov, V.: Least squares after model selection in high-dimensional sparse models. Bernoulli 19 (2013), 521-547. DOI 10.3150/11-bej410 | MR 3037163
[2] Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Statist. 24 (1996), 2350-2383. DOI 10.1214/aos/1032181158 | MR 1425957
[3] Donoho, D. L., Johnstone, I. M.: Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1994), 879-921. DOI 10.1214/aos/1024691081 | MR 1635414
[4] Draper, N. R., Nostrand, R. C. Van: Ridge regression and James-Stein estimation: review and comments. Technometrics 21 (1979), 451-466. DOI 10.2307/1268284 | MR 0555086
[5] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 (2001), 1348-1360. DOI 10.1198/016214501753382273 | MR 1946581
[6] Frank, L. E., Friedman, J. H.: A statistical view of some chemometrics regression tools. Technometrics 35 (1993), 109-135. DOI 10.1080/00401706.1993.10485033
[7] Hoerl, E., Kennard, R. W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 (1970), 55-67. DOI 10.1080/00401706.1970.10488634
[8] James, W., Stein, C.: Estimation with quadratic loss. In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press 1961, pp. 361-379. MR 0133191
[9] Jurečková, J.: Nonparametric estimate of regression coefficients. Ann. Math. Statist. 42 (1971), 1328-1338. DOI 10.1214/aoms/1177693245 | MR 0295487
[10] Hansen, B. E.: The risk of James-Stein and Lasso shrinkage. Econometric Rev. 35 (2015), 456-470. MR 3511027
[11] Saleh, A. K. Md. E.: Theory of Preliminary test and Stein-Type Estimators with Applications. John Wiley and Sons, New York 2006. DOI 10.1002/0471773751 | MR 2218139
[12] Saleh, A. K. Md. E., Arashi, M., Norouzirad, M., Kibria, B. M. G.: On shrinkage and selection: ANOVA MODEL. J. Statist. Res. 51 (2017), 165-191. MR 3753200
[13] Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press 1956, pp. 197-206. MR 0084922
[14] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Statist. Soc., Series B (Methodological) 58 (1996), 267-288. DOI 10.1111/j.2517-6161.1996.tb02080.x | MR 1379242
[15] Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method. Doklady Akademii Nauk SSSR 151 (1963), 501-504. MR 0162377
[16] Zou, H.: The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 (2006), 1418-1429. DOI 10.1198/016214506000000735 | MR 2279469
[17] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Royal Stat. Soc. Ser. B Stat. Methodol. 67 (2005), 301-320. DOI 10.1111/j.1467-9868.2005.00503.x | MR 2137327
Partner of
EuDML logo