Previous |  Up |  Next

Article

Keywords:
gamma distribution; negative-binomial random sums; Trotter's distance
Summary:
The main goal of this paper is to study the accuracy of approximation for the distributions of negative-binomial random sums of independent, identically distributed random variables by the gamma distribution.
References:
[1] Bevrani, H., Bening, V. E., Korolev, V. Yu.: On the accuracy of approximation of the negative-binomial distribution by the gamma distribution and convergence rate of the distributions of some statistics to the Student distribution. J. Math. Sci. 205 (2015), 1, 34-44. DOI 10.1007/s10958-015-2227-6 | MR 3403276
[2] Brown, M.: Error bound for exponential approximations of geometric convolutions. Ann. Probab. 18 (1990), 3, 1388-1402. DOI 10.1214/aop/1176990750 | MR 1062073
[3] Butzer, P. L., Hahn, L., U., Westphal: On the rate of approximation in the central limit theorem. J. Approx. Theory 13 (1975), 327-340. DOI 10.1016/0021-9045(75)90042-8 | MR 0394809
[4] Butzer, P. L., Hahn, L.: General theorems on rates of convergence in distribution of random variables I. General limit theorems. J. Multivariate Anal. 8 (1978), 181-201. DOI 10.1016/0047-259x(78)90071-4 | MR 0497594
[5] Butzer, P. L., Kirschfink, H., Schulz, D.: An extension of the Lindeberg-Trotter operator-theoretic approach to limit theorems for dependent random variables. Acta Sci. Math. 51 (1987), 423-433. MR 0940946
[6] Gavrilenko, S. V., Zubov, V. N., Korolev, V. Yu.: The rate of convergence of the distributions of regular statistics constructed from samples with negatively binomially distributed random sizes to the student distribution. J. Math. Sci. 220 (2017), 6, 701-713. DOI 10.1007/s10958-016-3213-3 | MR 3595558
[7] Grandell, J.: Risk Theory and geometric sums. Inform. Processes 2 (2002) 2, 180-181.
[8] Gut, A.: Probability: A Graduate Course. Springer Texts in Statistics. Springer, New York 2005. MR 2125120 | Zbl 1267.60001
[9] Hogg, R. V., McKean, J. W., Craig, A. T.: Introduction to Mathematical Statistics. Seventh edition. Pearson Education, Inc. 2013. MR 0137186
[10] Hung, T. L.: On a Probability metric based on Trotter operator. Vietnam J. Math. 35 (2007), 1, 22-33. MR 2317431
[11] Hung, T. L.: On the rate of convergence in limit theorems for geometric sums. Southeast Asian J. Sci. 2 (2013) 2, 117-130.
[12] Kalashnikov, V.: Geometric Sums: Bounds for Rare Events with Applications. Kluwer Academic Publisher 1997. MR 1471479
[13] Kirschfink, H.: The generalized Trotter operator and weak convergence of dependent random variables in different probability metrics. Results Math. 15 (1989), 294-323. DOI 10.1007/BF03322619 | MR 0997067
[14] Korolev, V. Yu.: Convergence of random sequences with independent random indices. I (in Russian). Teor. Veroyatnost. i Primenen. 39 (1994), 2, 313-333; translation in Theory Probab. Appl. 39 (1995), 2, 282-297. MR 1404685
[15] Kruglov, V. M., Korolev, V. Yu.: Limit theorems for Random Sums (in Russian). Moskov. Gos. Univ., Moscow 1990. MR 1072999
[16] Malinowski, M. T.: Geometrically strictly semi-stable law as the limit laws. Discuss. Math. Probab. Statist. 27 (2007), 79-97. DOI 10.7151/dmps.1089 | MR 2414775
[17] Peköz, E., Röllin, A.: New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Probab. 39 (2011), 2, 587-608. DOI 10.1214/10-aop559 | MR 2789507
[18] Peköz, E., Röllin, A., Ross, N.: Generalized Gamma approximation with rates for urns, walks and trees. Ann. Probab. 44 (2016) 3, 1776-1816. DOI 10.1214/15-aop1010 | MR 3502594
[19] Rényi, A.: Probability Theory. North-Holland Series in Applied Mathematics and Mechanics 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York. 1970. MR 0315747
[20] Rychlick, Z.: A central limit theorem for sums of a random number of independent random variables. Coll. Math. 35 (1976), 147-158. DOI 10.4064/cm-35-1-147-158 | MR 0410866
[21] Sunklodas, J. K.: On the normal approximation of a negative binomial random sum. Lith. Math. J. 55 (2015), 1, 150-158. DOI 10.1007/s10986-015-9271-2 | MR 3323288
[22] Trotter, H. F.: An elementary proof of the central limit theorem. Arch. Math. 10 (1959), 226-234. DOI 10.1007/BF01240790 | MR 0108847
Partner of
EuDML logo