Previous |  Up |  Next

Article

Keywords:
semicopula; copula; quasi-copula; aggregation operator; $t$-norm
Summary:
We define the notion of semicopula, a concept that has already appeared in the statistical literature and study the properties of semicopulas and the connexion of this notion with those of copula, quasi-copula, $t$-norm.
References:
[1] Agell N.: On the concavity of t-norms and triangular functions. Stochastica 8 (1984), 91–95 MR 0780142 | Zbl 0567.26010
[2] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 DOI 10.1016/0167-7152(93)90001-Y | MR 1223530 | Zbl 0798.60023
[3] Bassan B., Spizzichino F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93 (2005), 313–339 DOI 10.1016/j.jmva.2004.04.002 | MR 2162641 | Zbl 1070.60015
[4] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 MR 1936383 | Zbl 1039.03015
[5] Calvo T., Mesiar R.: Stability of aggregation operators. In: Proc. EUSFLAT 2001, Leicester 2001, pp. 475–478 MR 1821982
[6] Calvo T., Pradera A.: Double aggregation operators. Fuzzy Sets and Systems 142 (2004), 15–33 DOI 10.1016/j.fss.2003.10.029 | MR 2045340 | Zbl 1081.68105
[7] Dunford N., Schwartz J. T.: Linear Operators. Part I: General Theory. Wiley, New York 1958 MR 1009162 | Zbl 0635.47003
[8] Durante F., Sempi C.: On the characterization of a class of binary operations on bivariate distribution functions. Submitted Zbl 1121.60010
[9] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 MR 1614666 | Zbl 0906.60022
[10] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. In: Distributions with given marginals and statistical problems (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 MR 2058982 | Zbl 1135.62334
[11] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 DOI 10.1006/jmva.1998.1809 | MR 1703371
[12] Kelley J. L.: General Topology. Van Nostrand, New York 1955; reprinted by Springer, New York – Heidelberg – Berlin 1975 MR 0070144 | Zbl 0066.16604
[13] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[14] Kolesárová A.: $1$-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 MR 2042344
[15] Mikusiński P., Sherwood, H., Taylor M. D.: The Fréchet bounds revisited. Real Anal. Exchange 17 (1991), 759–764 MR 1171416
[16] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 DOI 10.1007/978-1-4757-3076-0 | MR 1653203 | Zbl 1152.62030
[17] Nelsen R. B., Fredricks G. A.: Diagonal copulas. In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–128 MR 1614665 | Zbl 0906.60021
[18] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions. In: Distributions With Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), (IMS Lecture Notes – Monogr. Ser. 28), Inst. Math. Statist., Hayward 1996, pp. 233–243 MR 1485535
[19] Nelsen R. B., Flores M. Úbeda: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. Submitted
[20] Schweizer B., Sklar A.: Probabilistic Metric Spaces. Elsevier, New York 1983 MR 0790314 | Zbl 0546.60010
[21] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
[22] Sklar A.: Random variables, joint distribution functions and copulas. Kybernetika 9 (1973), 449–460 MR 0345164 | Zbl 0292.60036
[23] Suarez F., Gil P.: Two families of fuzzy integrals. Fuzzy Sets and Systems 18 (1986), 67–81 DOI 10.1016/0165-0114(86)90028-X | MR 0825620 | Zbl 0595.28011
[24] Szász G.: Introduction to Lattice Theory. Academic Press, New York 1963 MR 0166118 | Zbl 0126.03703
[25] Flores M. Úbeda: Cópulas y quasicópulas: interrelaciones y nuevas propiedades. Aplicaciones. Ph. D. Dissertation. Universidad de Almería, Servicio de Publicaciones de la Universidad de Almería 2002
Partner of
EuDML logo