[1] Agell N.:
On the concavity of t-norms and triangular functions. Stochastica 8 (1984), 91–95
MR 0780142 |
Zbl 0567.26010
[4] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.:
Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106
MR 1936383 |
Zbl 1039.03015
[5] Calvo T., Mesiar R.:
Stability of aggregation operators. In: Proc. EUSFLAT 2001, Leicester 2001, pp. 475–478
MR 1821982
[7] Dunford N., Schwartz J. T.:
Linear Operators. Part I: General Theory. Wiley, New York 1958
MR 1009162 |
Zbl 0635.47003
[8] Durante F., Sempi C.:
On the characterization of a class of binary operations on bivariate distribution functions. Submitted
Zbl 1121.60010
[9] Fredricks G. A., Nelsen R. B.:
Copulas constructed from diagonal sections. In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136
MR 1614666 |
Zbl 0906.60022
[10] Fredricks G. A., Nelsen R. B.:
The Bertino family of copulas. In: Distributions with given marginals and statistical problems (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91
MR 2058982 |
Zbl 1135.62334
[11] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.:
A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205
DOI 10.1006/jmva.1998.1809 |
MR 1703371
[12] Kelley J. L.:
General Topology. Van Nostrand, New York 1955; reprinted by Springer, New York – Heidelberg – Berlin 1975
MR 0070144 |
Zbl 0066.16604
[13] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[14] Kolesárová A.:
$1$-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629
MR 2042344
[15] Mikusiński P., Sherwood, H., Taylor M. D.:
The Fréchet bounds revisited. Real Anal. Exchange 17 (1991), 759–764
MR 1171416
[17] Nelsen R. B., Fredricks G. A.:
Diagonal copulas. In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–128
MR 1614665 |
Zbl 0906.60021
[18] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.:
Derivability of some operations on distribution functions. In: Distributions With Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), (IMS Lecture Notes – Monogr. Ser. 28), Inst. Math. Statist., Hayward 1996, pp. 233–243
MR 1485535
[19] Nelsen R. B., Flores M. Úbeda: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. Submitted
[21] Sklar A.:
Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231
MR 0125600
[22] Sklar A.:
Random variables, joint distribution functions and copulas. Kybernetika 9 (1973), 449–460
MR 0345164 |
Zbl 0292.60036
[25] Flores M. Úbeda: Cópulas y quasicópulas: interrelaciones y nuevas propiedades. Aplicaciones. Ph. D. Dissertation. Universidad de Almería, Servicio de Publicaciones de la Universidad de Almería 2002