[1] Adamo J. M.:
Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms. Springer–Verlag, Berlin 2001
Zbl 0998.68228
[2] Aguzzoli S., Mundici D.: Weierstrass approximations by Lukasiewicz formulas with one quantified variable. In: 31st IEEE Internat. Symposium on Multiple-Valued Logic, 2001
[4] Amato P., Nola, A. Di, Gerla B.: Neural networks and rational Lukasiewicz logic. J. Multiple-Valued Logic and Soft Computing (accepted for publication)
[5] Amato P., Porto M.: An algorithm for the automatic generation of logical formula representing a control law. Neural Network World 10 (2000), 777–786
[6] Andrews R., Diederich, J., Tickle A. B.:
Survey and critique of techniques for extracting rules from trained artificical neural networks. Knowledge-based Systems 8 (1995), 378–389
DOI 10.1016/0950-7051(96)81920-4
[7] Bern M., Chew L. P., Eppstein, D., Ruppert J.:
Dihedral bounds for mesh generation in high dimensions. In: Proc. Sixth ACM-SIAM Symposium on Discrete Algorithms, ACM, San Francisco 1995, pp. 189–196
MR 1321850 |
Zbl 0849.68116
[9] Chen J., Liu J.:
Using mixture principal component analysis networks to extract fuzzy rules from data. Indust. Engrg. Chemistry Research 39 (2000), 2355–2367
DOI 10.1021/ie9905613
[10] Cignoli L. O., D’Ottaviano I. M. L., Mundici D.:
Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000
MR 1786097 |
Zbl 0937.06009
[11] Garcez A. S. d’Avila, Broda, K., Gabbay D. M.:
Symbolic knowledge extraction from artificial neural networks: A sound approach. Artificial Intelligence 125 (2001), 155–207
DOI 10.1016/S0004-3702(00)00077-1 |
MR 1805645
[13] Raedt L. De: Interactive Theory Revision: An Inductive Logic Programming Approach. Academic Press, London 1992
[14] Duch W., Adamczak, R., Grabczewski K.:
Extraction of logical rules from neural networks. Neural Processing Lett. 7 (1998), 211–219
DOI 10.1023/A:1009670302979
[15] Duch W., Adamczak, R., Grabczewski K.: A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Trans. Neural Networks 11 (2000), 277–306
[16] Dzeroski S., Lavrac N.:
Relational Data Mining. Springer–Verlag, Berlin 2001
Zbl 1003.68039
[17] Edelsbrunner H.:
Algorithms in Combinatorial Geometry. Springer–Verlag, Heidelberg 1987
MR 0904271 |
Zbl 0634.52001
[18] Esteva F., Godo, L., Montagna F.:
The L$\Pi $ and L$\Pi \frac{1}{2}$ logics: Two complete fuzzy systems joining Lukasiewicz and product logic. Arch. Math. Logic 40 (2001), 39–67
DOI 10.1007/s001530050173 |
MR 1816606
[19] Faber J., Novák M., Svoboda, P., Tatarinov V.: Electrical brain wave analysis during hypnagogium. Neural Network World 13 (2003), 41–54
[21] Freitas A. A.:
Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer–Verlag, Berlin 2002
Zbl 1013.68075
[22] Gehrke M., Walker C. L., Walker E. A.:
Normal forms and truth tables for fuzzy logics. Fuzzy Sets and Systems 138 (2003), 25–51
MR 2012239 |
Zbl 1027.03023
[25] Healy M. J., Caudell T. P.:
Acquiring rule sets as a product of learning in a logical neural architecture. IEEE Trans. Neural Networks 8 (1997), 461–474
DOI 10.1109/72.572088
[26] Holeňa M.:
Extraction of logical rules from data by means of piecewise-linear neural networks. In: Proc. 5th Internat. Conference on Discovery Science, Springer–Verlag, Berlin 2002, pp. 192–205
Zbl 1024.68560
[27] Holeňa M., Baerns M.: Artificial neural networks in catalyst development. In: Experimental Design for Combinatorial and High Throughput Materials Development (J. N. Cawse, ed.), Wiley, Hoboken 2003, pp. 163–202
[28] Holeňa M., Baerns M.: Feedforward neural networks in catalysis. A tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction. Catalysis Today 81 (2003), 485–494
[31] Lu H., Setiono, R., Liu H.:
Effective data mining using neural networks. IEEE Trans. Knowledge and Data Engrg. 8 (1996), 957–961
DOI 10.1109/69.553163
[34] Mitra S., De R. K., Pal S. K.:
Knowledge-based fuzzy MLP for classification and rule generation. IEEE Trans. Neural Networks 8 (1997), 1338–1350
DOI 10.1109/72.641457
[35] Mitra S., Hayashi Y.:
Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Trans. Neural Networks 11 (2000), 748–768
DOI 10.1109/72.846746
[36] Muggleton S.:
Inductive Logic Programming. Academic Press, London 1992
Zbl 1132.68007
[38] Narazaki H., Watanabe, T., Yamamoto M.:
Reorganizing knowledge in neural networks: An exploratory mechanism for neural networks in data classification problems. IEEE Trans. Systems Man Cybernet. 26 (1996), 107–117
DOI 10.1109/3477.484442
[39] Nauck D., Nauck, U., Kruse R.: Generating classification rules with the neuro-fuzzy system NEFCLASS. In: Proc. Biennial Conference of the North American Fuzzy Information Processing Society NAFIPS’96, 1996, pp. 466–470
[40] Novák V., Perfilieva I.:
Some consequences of herbrand and McNaughton theorems in fuzzy logic. In: Discovering World with Fuzzy Logic: Perspectives and Approaches to Formalization of Human-Consistent Logical Systems (V. Novák and I. Perfilieva, eds.), Springer–Verlag, Heidelberg 1999, pp. 271–295
MR 1858104
[41] Novák V., Perfilieva, I., Močkoř J.:
Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht 1999
MR 1733839 |
Zbl 0940.03028
[42] Perfilieva I.: Neural nets and normal forms from fuzzy logic point of view. Technical Report, Institute for Research and Applications of Fuzzy Modelling, 2001
[43] Perfilieva I.:
Normal forms for fuzzy logic functions and their approximation ability. Fuzzy Sets and Systems 124 (2001), 371–384
MR 1860857 |
Zbl 0994.03019
[45] Perfilieva I.:
Normal forms in BL-algerbra and their contribution fo universal approximation of functions. Fuzzy Sets and Systems 143 (2004), 111–127
DOI 10.1016/j.fss.2003.06.009 |
MR 2060276
[47] Perfilieva I., Kreinovich V.:
A new universal approximation result for fuzzy systems, which reflects CNF-DNF duality. Internat. J. Intelligent Systems 17 (2002), 1121–1130
DOI 10.1002/int.10063 |
Zbl 1028.68169
[49] Quinlan J.:
C4. 5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco 1992
Zbl 0900.68112
[51] Tickle A. B., Andrews R., Golea, M., Diederich J.:
The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks. IEEE Trans. Neural Networks 9 (1998), 1057–1068
DOI 10.1109/72.728352
[52] Towell G. G., Shavlik J. W.:
Extracting refined rules from knowledge-based neural networks. Mach. Learning 13 (1993), 71–101
DOI 10.1007/BF00993103
[53] Triantaphyllou E., (eds.) G. Felici:
Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Kluwer Academic Publishers, Dordrecht 2003
Zbl 1117.68028
[54] Tsukimoto H.:
Extracting rules from trained neural networks. IEEE Trans. Neural Networks 11 (2000), 333–389
DOI 10.1109/72.839008
[55] Wong M. L., Leung K. S.:
Data Mining Using Grammar Based Genetic Programming and Applications. Kluwer Academic Publishers, Dordrecht 2000
Zbl 0944.68172
[56] Zhang C., Zhang, S., Heymer B. E.: Association Rule Mining: Models and Algoritms. Springer–Verlag, Berlin 2002