[2] Bertino S.:
On dissimilarity between cyclic permutations. Metron 35 (1977), 53–88. In Italian
MR 0600402
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.:
Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104
MR 1936383 |
Zbl 1039.03015
[4] Durante F., Mesiar, R., Sempi C.:
On a family of copulas constructed from the diagonal section. Soft Computing (accepted for publication)
Zbl 1098.60016
[6] Frank M. J.: Diagonals of copulas and Schröder’s equation. Aequationes Math. 51 (1996), 150
[7] Fredricks G. A., Nelsen R. B.:
Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136
MR 1614666 |
Zbl 0906.60022
[8] Fredricks G. A., Nelsen R. B.:
The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91
MR 2058982 |
Zbl 1135.62334
[9] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.:
A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999) 193–205
DOI 10.1006/jmva.1998.1809 |
MR 1703371
[10] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[11] Kolesárová A.:
$1$-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629
MR 2042344
[12] Kolesárová A., Mordelová J.: $1$-Lipschitz and kernel aggregation operators. In: Proc. AGOP ’2001, Oviedo 2001, pp. 71–76
[14] Nelsen R. B., Fredricks G. A.:
Diagonal copulas. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–127
MR 1614665 |
Zbl 0906.60021
[15] Nelsen R. B., Molina J. J. Quesada, Lallena J. A. Rodríguez, Flores M. Úbeda:
Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358
DOI 10.1016/j.jmva.2003.09.002 |
MR 2081783
[17] Sklar A.:
Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231
MR 0125600
[18] Sklar A.:
Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460
MR 0345164 |
Zbl 0292.60036