[2] H. Bellout, F. Bloom, J. Nečas:
Young Measure-Valued Solutions for Non-Newtonian Incompressible Fluids. Preprint, 1991.
MR 1301173
[3] H. Bellout, F. Bloom, J. Nečas:
Phenomenological Behaviour of Multipolar Viscous Fluids. Quaterly of Applied Mathematics 54 (1992), no. 3, 559–584.
DOI 10.1090/qam/1178435 |
MR 1178435
[4] M. E. Bogovskij: Solutions of Some Problems of Vector Analysis with the Operators div and grad. Trudy Sem. S. L. Soboleva (1980), 5–41. (Russian)
[5] N. Dunford, J. T. Schwarz: Linear Operators: Part I. General Theory. Interscience Publishers Inc., New York, 1958.
[6] H. Gajewski, K. Gröger, K. Zacharias:
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie Verlag, Berlin, 1974.
MR 0636412
[8] O. A. Ladyzhenskaya:
The Mathematical Theory of Viscous Flow. Gordon and Beach, New York, 1969.
MR 0254401
[9] D. Leigh: Nonlinear Continuum Mechanics. McGraw-Hill, New York, 1968.
[10] J. L. Lions:
Qeulques méthodes de résolution des problèms aux limites non lineaires. Dunod, Paris, 1969.
MR 0259693
[11] J. Málek, J. Nečas, A. Novotný:
Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer. Czech. Math. Journal 42 (1992), no. 3, 549–575.
MR 1179317
[12] J. Málek, J. Nečas, M. Růžička:
On Non-Newtonian Incompressible Fluids. M3AS 1 (1993).
MR 1203271
[13] J. Nečas: An Introduction to Nonlinear Elliptic Equations. J. Wiley, 1984.
[14] J. Nečas:
Theory of Multipolar Viscous Fluids. The mathematics of finite elements and applications VII, MAFELAP 1990, J. R. Whiteman (ed.), Academic Press, 1991, pp. 233–244.
MR 1132501
[16] M. Pokorný: Cauchy Problem for the Non-Newtonian Incompressible Fluid (Master degree thesis, Faculty of Mathematics and Physics, Charles University, Prague. 1993.
[17] K. R. Rajagopal:
Mechanics of Non-Newtonian Fluids. G. P. Galdi, J. Nečas: Recent Developments in Theoretical Fluid Dynamics, Pitman Research Notes in Math. Series 291, 1993.
MR 1268237 |
Zbl 0818.76003
[18] R. Temam:
Navier-Stokes Equations—Theory and Numerical Analysis. North Holland, Amsterodam-New York-Oxford, 1979.
MR 0603444 |
Zbl 0426.35003
[20] H. Triebel:
Interpolation Theory, Function Spaces, Differential Operators. Verlag der Wiss., Berlin, 1978.
MR 0500580 |
Zbl 0387.46033