[2] S. Adly, D. Goeleven, M. Théra:
Recession mappings and noncoercive variational inequalities. (to appear).
MR 1377476
[3] H. Attouch, Z. Chbani, A. Moudafi: Recession operators and solvability of variational problems. Preprint, Laboratoire d’Analyse Convexe, Université de Montpellier 1993.
[4] C. Baiocchi, G. Buttazzo, F. Gastaldi, F. Tomarelli:
General existence theorems for unilateral problems in continuum mechanics. Arch. Rat. Mech. Anal. 100 (1988), no. 2, 149–180.
DOI 10.1007/BF00282202 |
MR 0913962
[5] H. Brézis, L. Nirenberg:
Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Scuola Normale Superiore Pisa, Classe di Scienze Serie IV V (1978), no. 2, 225–235.
MR 0513090
[6] F. E. Browder:
Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. XVIII (1976), no. 2.
MR 0405188 |
Zbl 0327.47022
[7] P. G. Ciarlet, P. Rabier:
Les équations de Von Karman. Lecture Notes in Mathematics 836, Springer Verlag, 1980.
MR 0595326
[8] P. G. Ciarlet, J. Nečas:
Unilateral problems in nonlinear three-dimensional elasticity. Arch. Rational Mech. Anal. 87 (1985), 319–338.
DOI 10.1007/BF00250917 |
MR 0767504
[9] A. Cimetière:
Un problème de flambement Unilatéral en théorie des plaques. Journal de Mécanique 19 (1980), no. 1, 183–202.
MR 0571805
[10] F. H. Clarke: Nonsmooth Analysis and Optimization. Wiley, New York, 1984.
[11] J. Dieudonné: Eléments d’Analyse. Gauthier-Villars, 1968.
[12] G. Fichera: Boundary value problems in elasticity with unilateral constraints. Handbuch der Physik, Springer-verlag, Berlin-Heidelberg-New York VIa.2 (1972), 347–389.
[13] J. Frehse:
Capacity methods in the theory of partial differential equations. Iber. d. Dt. Math.-Verein 84 (1982), 1–44.
MR 0644068 |
Zbl 0486.35002
[14] D. Goeleven:
On the solvability of noncoercive linear variational inequalities in separable Hilbert spaces. Journal of Optimization Theory and Applications 79 (1993), no. 3, 493–511.
DOI 10.1007/BF00940555 |
MR 1255283 |
Zbl 0798.49012
[15] D. Goeleven: Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets. FUNDP Research-Report, 1994.
[16] D. Goeleven, G. E. Stavroulakis, P. D. Panagiotopoulos:
Solvability theory for a class of hemivariational inequalities involving copositive plus matrices. Applications in Robotics, Preprint 1995.
MR 1422180
[17] H. N. Karamanlis, P. D. Panagiotopoulos: The eigenvalue problems in hemivariational inequalities and its applications to composite plates. Journal Mech. Behaviour of Materials, To appear.
[18] N. Kikuchi, J. T. Oden:
Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.
MR 0961258
[19] E. M. Landesman, A. C. Lazer:
Nonlinear perturbations of linear elliptic boundary value problems at resonance. Journal of Mathematics and Mechanics 19 (1970), 609–623.
MR 0267269
[21] D. T. Luc, J-P. Penot: Convergence of Asymptotic Directions. Preprint Université de Pau, 1994.
[22] Z. Naniewicz:
Hemivariational inequality approach to constrained problems for starshaped admissible sets. Journal of Optimization Theory and Applications 83 (1994), no. 1, 97–112.
DOI 10.1007/BF02191764 |
MR 1298859
[25] P. D. Panagiotopoulos:
Inéquations Hémivariationnelles semi-coercives dans la théorie des plaques de Von Karman. C. R. Acad. Sci. Paris 307 (1988), no. Série I, 735–738.
MR 0972823 |
Zbl 0653.73011
[26] P. D. Panagiotopoulos, G. E. Stravoulakis:
The delamination effect in laminated Von Kármán plates under unilateral boundary conditions. A variational-hemivariational inequality approach. Journal of Elasticity 23 (1990), 69–96.
DOI 10.1007/BF00041685 |
MR 1065231
[27] P. D. Panagiotopoulos, G. E. Stravoulakis:
A variational-hemivariational inequality approach to the laminated plate theory under subdifferential boundary conditions. Quarterly of Applied Mathematics XLVI (1988), no. 3, 409–430.
DOI 10.1090/qam/963579 |
MR 0963579
[28] P. D. Panagiotopoulos:
Semicoercive hemivariational inequalities, on the delamination of composite plates. Quarterly of Applied Mathematics XLVII (1989), no. 4, 611–629.
MR 1031680 |
Zbl 0693.73007
[29] P. D. Panagiotopoulos:
Hemivariational inequalities and substationarity in the static theory of v. Kármán plates. ZAMM, Z. Angew. Math. u. Mech. 65 (1985), no. 6, 219–229.
DOI 10.1002/zamm.19850650608 |
MR 0801713
[30] P. D. Panagiotopoulos:
Hemivariational inequalities and their applications. In: J. J. Moreau, P. D. Panagiotopoulos, G. Strang (eds), Topics in Nonsmooth Mechanics, Birkhäuser Verlag 1988.
MR 0957088 |
Zbl 0973.90060
[31] P. D. Panagiotopoulos:
Nonconvex superpotentials in the sense of F. H. Clarke and applications. Mech. Res. Comm. 8 (1981), 335–340.
MR 0639382
[32] P. D. Panagiotopoulos:
Nonconvex Energy Function, Hemivariational Inequalities and Substationarity Principles. Acta Mech. 48 (1983), 160–183.
MR 0715806
[33] P. D. Panagiotopoulos:
Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer Verlag Berlin Heidelberg, 1993.
MR 1385670 |
Zbl 0826.73002