Previous |  Up |  Next

Article

Keywords:
entropy of dynamical systems; fuzzy partitions; entropy of generating partition
Summary:
Recently D. Dumitrescu ([4], [5]) introduced a new kind of entropy of dynamical systems using fuzzy partitions ([1], [6]) instead of usual partitions (see also [7], [11], [12]). In this article a representation theorem is proved expressing the entropy of the dynamical system by the entropy of a generating partition.
References:
[1] J. L. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981. MR 0631231 | Zbl 0503.68069
[2] P. Billingsley: Ergodic Theory and Information. Willey, New York, 1965. MR 0192027 | Zbl 0141.16702
[3] D. Butnariu, E. P. Klement: Triangular norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 169 (1991), 111–143. DOI 10.1016/0022-247X(91)90181-X | MR 1135265
[4] D. Dumitrescu: Measure preserving transformation and the entropy of fuzzy partition. 13th Linz seminar on fuzzy set theory (Linz 1991), 25–27.
[5] D. Dumitrescu: Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal. Appl. 176 (1993), 359–373. DOI 10.1006/jmaa.1993.1220 | MR 1224152 | Zbl 0782.28012
[6] K. Kuriyama: Entropy of a finite partition of fuzzy sets. J. Math. Anal. Appl. 94 (1983), 38–43. DOI 10.1016/0022-247X(83)90004-5 | MR 0701448 | Zbl 0511.94030
[7] P. Maličký, B. Riečan: On the entropy of dynamical systems. Proc. Ergodic theory and related topics II (Georgenthal 1986), Teubner, Berlin, 1987, 135–138. MR 0931138
[8] D. Markechová: The entropy of $F$-quantum spaces. Math. Slovaca 40 (1990), 177–190. MR 1094772
[9] D. Markechová: The entropy of fuzzy dynamical systems and generators. Fuzzy Sets and Systems 48 (1992), 351–363. DOI 10.1016/0165-0114(92)90350-D | MR 1178175
[10] R. Mesiar: The Bayes formula and the entropy of fuzzy probability spaces. Int. J. General Systems 20 (1990), 67–71. DOI 10.1080/03081079108945015
[11] B. Riečan: On a type of entropy of dynamical systems. Tatra Mountains Math. Publications.
[12] D. J. Rudolph: Fundamentals of Measurable Dynamics. Claredon Press, Oxford, 1990. MR 1086631 | Zbl 0718.28008
[13] J. Rybárik: The entropy of $Q$-$F$-dynamical systems. Busefal 48 (1991), 24–26.
Partner of
EuDML logo