Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
unit disk; polydisc; polynomial; Toeplitz operator; Bergman projection
Summary:
Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping $h$ and that of $zh$, we study various $L^2$ norms for $T_{\varphi }(h)$, where $T_{\varphi }$ is the Toeplitz operator with symbol $\varphi $. In Theorem \ref {thm:Transitivity}, given polynomials $p$ and $q$ we find a symbol $\varphi $ such that $T_{\varphi }(p)=q$. We extend some of our results to the polydisc.
References:
[1] Ahlfors, L.: Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. AMS Chelsea Publishing 385. AMS, Providence (2021). MR 4506522 | Zbl 1477.30001
[2] Bambico, H. K., Çelik, M., Gross, S. T., Hall, F.: Generalization of the excess area and its geometric interpretation. New York J. Math. 28 (2022), 1230-1255. MR 4474183 | Zbl 1503.31001
[3] Bell, S. R.: Biholomorphic mappings and the $\bar \partial$-problem. Ann. Math. (2) 114 (1981), 103-113. DOI 10.2307/1971379 | MR 625347 | Zbl 0423.32009
[4] Bell, S., Catlin, D.: Boundary regularity of proper holomorphic mappings. Duke Math. J. 49 (1982), 385-396. DOI 10.1215/S0012-7094-82-04924-9 | MR 659947 | Zbl 0475.32011
[5] Boas, H. P.: Holomorphic reproducing kernels in Reinhardt domains. Pac. J. Math. 112 (1984), 273-292. DOI 10.2140/pjm.1984.112.273 | MR 743985 | Zbl 0497.32021
[6] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). DOI 10.1090/amsip/019 | MR 1800297 | Zbl 0963.32001
[7] Conway, J. B.: Functions of One Complex Variable. Graduate Texts in Mathematics 11. Springer, Berlin (1978). DOI 10.1007/978-1-4615-9972-2 | MR 503901 | Zbl 0277.30001
[8] D'Angelo, J. P.: Inequalities from Complex Analysis. The Carus Mathematical Monographs 28. Mathematical Association of America, Washington (2002). DOI 10.5948/UPO9780883859704 | MR 1899123 | Zbl 0996.30001
[9] D'Angelo, J. P.: Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry. Cornerstones. Springer, Cham (2019). DOI 10.1007/978-3-030-16514-7 | MR 3931729 | Zbl 1428.42001
[10] Diederich, K., Fornaess, J. E.: Boundary regularity of proper holomorphic mappings. Invent. Math. 67 (1982), 363-384. DOI 10.1007/BF01398927 | MR 664111 | Zbl 0501.32010
[11] Folland, G. B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995). DOI 10.1515/9780691213033 | MR 1357411 | Zbl 0841.35001
[12] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. John Wiley & Sons, New York (1999). MR 1681462 | Zbl 0924.28001
[13] Greene, R. E., Krantz, S. G.: Function Theory of One Complex Variable. Graduate Studies in Mathematics 40. AMS, Providence (2006). DOI 10.1090/gsm/040 | MR 2215872 | Zbl 1114.30001
[14] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics 199. Springer, Berlin (2000). DOI 10.1007/978-1-4612-0497-8 | MR 1758653 | Zbl 0955.32003
[15] Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable. Graduate Texts in Mathematics 25. Springer, Berlin (1975). DOI 10.1007/978-3-642-88044-5 | MR 367121 | Zbl 0307.28001
[16] Krantz, S. G.: Function Theory of Several Complex Variables. AMS, Providence (2001). DOI 10.1090/chel/340 | MR 1846625 | Zbl 1087.32001
[17] Ravisankar, S., Zeytuncu, Y. E.: A note on smoothing properties of the Bergman projection. Int. J. Math. 27 (2016), Article ID 1650087, 10 pages. DOI 10.1142/S0129167X16500877 | MR 3570372 | Zbl 1367.32006
[18] Straube, E. J.: Exact regularity of Bergman, Szegő and Sobolev space projections in nonpseudoconvex domains. Math. Z. 192 (1986), 117-128. DOI 10.1007/BF01162025 | MR 835396 | Zbl 0573.46018
Partner of
EuDML logo