Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
EM ring; annihilating content polynomial; polynomial ring; uniserial ring; generalized morphic ring; zero-divisor
Summary:
Let $R[x]$ be the polynomial ring over a ring $R$ with unity. A polynomial $f(x)\in R[x]$ is referred to as a left annihilating content polynomial (left ACP) if there exist an element $r \in R$ and a polynomial $g(x) \in R[x]$ such that $f(x)=rg(x)$ and $g(x)$ is not a right zero-divisor polynomial in $R[x]$. A ring $R$ is referred to as left EM if each polynomial $f(x) \in R[x]$ is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover, several extensions of EM rings are investigated, including polynomial rings, matrix rings, and Ore localizations.
References:
[1] Abuosba, E., Al-Azaizeh, M., Ghanem, M.: Prüfer conditions vs EM conditions. Commun. Korean Math. Soc. 38 (2023), 69-77. DOI 10.4134/CKMS.c210439 | MR 4542621 | Zbl 1519.13001
[2] Abuosba, E., Ghanem, M.: Annihilating content in polynomial and power series rings. J. Korean Math. Soc. 56 (2019), 1403-1418. DOI 10.4134/JKMS.j180698 | MR 3997475 | Zbl 1427.13024
[3] Agayev, N., Güngöroğlu, G., Harmanci, A., Halicioğlu, S.: Abelian modules. Acta Math. Univ. Comen., New Ser. 78 (2009), 235-244. MR 2684191 | Zbl 1190.16047
[4] Anderson, D. D., Abuosba, E., Ghanem, M.: Annihilating content polynomials and EM- rings. J. Algebra Appl. 21 (2022), Article ID 2250092, 18 pages. DOI 10.1142/S021949882250092X | MR 4406639 | Zbl 1490.13002
[5] Anderson, D. D., Anderson, D. F., Markanda, R.: The rings $R(X)$ and $R\langle X \rangle$. J. Algebra 95 (1985), 96-115. DOI 10.1016/0021-8693(85)90096-1 | MR 0797658 | Zbl 0621.13008
[6] Anderson, D. D., Camillo, V.: Armendariz rings and Gaussian rings. Commun. Algebra 26 (1998), 2265-2272. DOI 10.1080/00927879808826274 | MR 1626606 | Zbl 0915.13001
[7] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings. Commun. Algebra 30 (2002), 4407-4416. DOI 10.1081/AGB-120013328 | MR 1936480 | Zbl 1060.13007
[8] Baeck, J.: The rings where zero-divisor polynomials have zero-divisor coefficients. Rocky Mt. J. Math. 51 (2021), 771-785. DOI 10.1216/rmj.2021.51.771 | MR 4298828 | Zbl 1477.16040
[9] Baeck, J.: On modules related to McCoy modules. Open Math. 20 (2022), 1734-1752. DOI 10.1515/math-2022-0545 | MR 4529433 | Zbl 1508.16008
[10] Baeck, J.: On $S$-principal right ideal rings. AIMS Math. 7 (2022), 12106-12122. DOI 10.3934/math.2022673 | MR 4431772
[11] Baeck, J.: $S$-injective modules. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118 (2024), Article ID 20, 20 pages. DOI 10.1007/s13398-023-01514-7 | MR 4662890 | Zbl 07796711
[12] Baeck, J., Kim, N. K., Kwak, T. K., Lee, Y.: Structure of annihilators of powers. Turk. J. Math. 46 (2022), 1945-1964. DOI 10.55730/1300-0098.3243 | MR 4453897 | Zbl 1515.16034
[13] Baeck, J., Kim, N. K., Lee, Y., Nielsen, P. P.: Zero-divisor placement, a condition of Camillo, and the McCoy property. J. Pure Appl. Algebra 224 (2020), Article ID 106432, 13 pages. DOI 10.1016/j.jpaa.2020.106432 | MR 4099920 | Zbl 1465.16037
[14] Baeck, J., Lee, G., Lim, J. W.: $S$-Noetherian rings and their extensions. Taiwanese J. Math. 20 (2016), 1231-1250. DOI 10.11650/tjm.20.2016.7436 | MR 3580293 | Zbl 1357.16039
[15] Bergman, G. M.: The diamond lemma for ring theory. Adv. Math. 29 (1978), 178-218. DOI 10.1016/0001-8708(78)90010-5 | MR 0506890 | Zbl 0326.16019
[16] Bilgin, Z., Reyes, M. L., Tekir, Ü.: On right $S$-Noetherian rings and $S$-Noetherian modules. Commun. Algebra 46 (2018), 863-869. DOI 10.1080/00927872.2017.1332199 | MR 3764903 | Zbl 1410.16026
[17] Camillo, V., Nielsen, P. P.: McCoy rings and zero-divisors. J. Pure Appl. Algebra 212 (2008), 599-615. DOI 10.1016/j.jpaa.2007.06.010 | MR 2365335 | Zbl 1162.16021
[18] Cannon, G. A., Neuerburg, K. M.: Ideals in Dorroh extensions of rings. Missouri J. Math. Sci. 20 (2008), 165-168. DOI 10.35834/mjms/1316032775 | Zbl 1174.16001
[19] Cui, J., Chen, J.: On McCoy modules. Bull. Korean Math. Soc. 48 (2011), 23-33. DOI 10.4134/BKMS.2011.48.1.023 | MR 2778493 | Zbl 1221.16028
[20] Endo, S.: Note on PP rings (A supplement to Hattori's paper). Nagoya Math. J. 17 (1960), 167-170. DOI 10.1017/S0027763000002129 | MR 0137746 | Zbl 0117.02203
[21] K. R. Goodearl, R. B. Warfield, Jr.: An Introduction to Noncommutative Noetherian Rings. London Mathematical Society Student Texts 61. Cambridge University Press, Cambridge (2004). DOI 10.1017/CBO9780511841699 | MR 2080008 | Zbl 1101.16001
[22] Hashemi, E., Estaji, A. AS., Ziembowski, M.: Answers to some questions concerning rings with property (A). Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 651-664. DOI 10.1017/S0013091516000407 | MR 3674083 | Zbl 1405.16036
[23] Hong, C. Y., Jeon, Y. C., Kim, N. K., Lee, Y.: The McCoy condition on noncommutative rings. Commun. Algebra 39 (2011), 1809-1825. DOI 10.1080/00927872.2010.480952 | MR 2821508 | Zbl 1231.16032
[24] Hong, C. Y., Kim, N. K., Lee, Y., Nielsen, P. P.: The minimal prime spectrum of rings with annihilator conditions. J. Pure Appl. Algebra 213 (2009), 1478-1488. DOI 10.1016/j.jpaa.2009.01.005 | MR 2497591 | Zbl 1218.16001
[25] Hong, C. Y., Kim, N. K., Lee, Y., Ryu, S. J.: Rings with property (A) and their extensions. J. Algebra 315 (2007), 612-628. DOI 10.1016/j.jalgebra.2007.01.042 | MR 2351882 | Zbl 1156.16001
[26] Huckaba, J. A., Keller, J. M.: Annihilation of ideals in commutative rings. Pac. J. Math. 83 (1979), 375-379. DOI 10.2140/pjm.1979.83.375 | MR 0557938 | Zbl 0388.13001
[27] Jordan, D. A.: A left Noetherian, right Ore domain which is not right Noetherian. Bull. Lond. Math. Soc. 12 (1980), 202-204. DOI 10.1112/blms/12.3.202 | MR 0572101 | Zbl 0433.16001
[28] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). MR 0345945 | Zbl 0296.13001
[29] Kim, N. K., Lee, Y.: Armendariz rings and reduced rings. J. Algebra 223 (2000), 477-488. DOI 10.1006/jabr.1999.8017 | MR 1735157 | Zbl 0957.16018
[30] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (1991). DOI 10.1007/978-1-4419-8616-0 | MR 1125071 | Zbl 0728.16001
[31] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). DOI 10.1007/978-1-4612-0525-8 | MR 1653294 | Zbl 0911.16001
[32] Lang, S.: Algebra. Graduate Texts in Mathematics 211. Springer, New York (2002). DOI 10.1007/978-1-4613-0041-0 | MR 1878556 | Zbl 0984.00001
[33] Lee, G., Baeck, J., Lim, J. W.: Eakin-Nagata-Eisenbud theorem for right $S$-Noetherian rings. Taiwanese J. Math. 27 (2023), 237-257. DOI 10.11650/tjm/221101 | MR 4563518 | Zbl 1529.16018
[34] Lee, T.-K., Zhou, Y.: Armendariz and reduced rings. Commun. Algebra 32 (2004), 2287-2299. DOI 10.1081/AGB-120037221 | MR 2100471 | Zbl 1068.16037
[35] Marks, G., Mazurek, R., Ziembowski, M.: A unified approach to various generalizations of Armendariz rings. Bull. Aust. Math. Soc. 81 (2010), 361-397. DOI 10.1017/S0004972709001178 | MR 2639852 | Zbl 1198.16025
[36] Mazurek, R., Ziembowski, M.: Right Gaussian rings and skew power series rings. J. Algebra 330 (2011), 130-146. DOI 10.1016/j.jalgebra.2010.11.014 | MR 2774621 | Zbl 1239.16041
[37] Nielsen, P. P.: Semi-commutativity and the McCoy condition. J. Algebra 298 (2006), 134-141. DOI 10.1016/j.jalgebra.2005.10.008 | MR 2215121 | Zbl 1110.16036
[38] Rege, M. B., Chhawchharia, S.: Armendariz rings. Proc. Japan Acad., Ser. A 73 (1997), 14-17. DOI 10.3792/pjaa.73.14 | MR 1442245 | Zbl 0960.16038
Partner of
EuDML logo