Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
completely positive/copositive matrix; proper cone; semipositive matrix; positive semidefinite matrix; linear preserver problem
Summary:
The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal {S}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices (${\rm COP}_n$ and ${\rm CP}_n$). A description of an invertible linear map on $\mathcal {S}^n$ such that $L({\rm CP}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal {S}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal {N}^n_+$ for $n \leq 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi ({\rm CP} _n)$ (for $n \leq 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal {S}^2$ that leaves invariant the closed convex cone $\mathcal {S}^2_+$.
References:
[1] Cain, B., Hershkowitz, D., Schneider, H.: Theorems of the alternative for cones and Lyapunov regularity of matrices. Czech. Math. J. 47 (1997), 487-499. DOI 10.1023/A:1022463518098 | MR 1461427 | Zbl 0902.15011
[2] Chandrashekaran, A., Jayaraman, S., Mer, V. N.: Semipositivity of linear maps relative to proper cones in finite dimensional real Hilbert spaces. Electron. J. Linear Algebra 34 (2018), 304-319. DOI 10.13001/1081-3810.3733 | MR 3841397 | Zbl 1398.15037
[3] Chandrashekaran, A., Jayaraman, S., Mer, V. N.: A characterization of nonnegativity relative to proper cones. Indian J. Pure Appl. Math. 51 (2020), 935-944. DOI 10.1007/s13226-020-0442-4 | MR 4159333 | Zbl 1456.15029
[4] Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10 (1975), 285-290. DOI 10.1016/0024-3795(75)90075-0 | MR 0376726 | Zbl 0327.15018
[5] Furtado, S., Johnson, C. R., Zhang, Y.: Linear preservers of copositive matrices. Linear Multilinear Algebra 69 (2021), 1779-1788. DOI 10.1080/03081087.2019.1692775 | MR 4279156 | Zbl 1472.15040
[6] Gowda, M. S.: On copositive and completely positive cones and $Z$-transformations. Electron. J. Linear Algebra 23 (2012), 198-211. DOI 10.13001/1081-3810.1515 | MR 2889582 | Zbl 1302.15043
[7] Gowda, M. S., Song, Y. J., Sivakumar, K. C.: Some characterizations of cone preserving $Z$-transformations. Ann. Oper. Res. 287 (2020), 727-736. DOI 10.1007/s10479-017-2439-x | MR 4076137 | Zbl 1444.47077
[8] Gowda, M. S., Sznajder, R.: On the irreducibility, self-duality and non-homogeneity of complete positive cones. Electron. J. Linear Algebra 26 (2013), 177-191. DOI 10.13001/1081-3810.1648 | MR 3065857 | Zbl 1283.15104
[9] Gowda, M. S., Sznajder, R., Tao, J.: The automorphism group of a completely positive cone and its Lie algebra. Linear Algebra Appl. 438 (2013), 3862-3871. DOI 10.1016/j.laa.2011.10.006 | MR 3034504 | Zbl 1286.22007
[10] Johnson, C. R., Smith, R. L., Tsatsomeros, M. J.: Matrix Positivity. Cambridge Tracts in Mathematics 221. Cambridge University Press, Cambridge (2020). DOI 10.1017/9781108778619 | MR 4411340 | Zbl 1469.15002
[11] Loewy, R., Schneider, H.: Positive operators on the $n$-dimensional ice cream cone. J. Math. Anal. Appl. 49 (1975), 375-392. DOI 10.1016/0022-247X(75)90186-9 | MR 0407654 | Zbl 0308.15011
[12] Orlitzky, M. J.: Positive and $Z$-operators on closed convex cones. Electron. J. Linear Algebra 34 (2018), 444-458. DOI 10.13001/1081-3810.3782 | MR 3871891 | Zbl 1398.15040
[13] Pierce, S., al., et: A survey of linear preserver problems. Linear Multilinear Algebra 33 (1992), 1-129. DOI 10.1080/03081089208818176 | MR 1346777
[14] Shaked-Monderer, N., Berman, A.: Copositive and Completely Positive Matrices. World Scientific, Hackensack (2021). DOI 10.1142/11386 | MR 4274598 | Zbl 1459.15002
[15] Shanmugapriya, A., Chandrashekaran, A.: On the dual of the tensor product of semidefinite cones. J. Anal. 32 (2024), 19-26. DOI 10.1007/s41478-023-00573-8 | MR 4706938
[16] Shitov, Y.: Linear mappings preserving the copositive cone. Proc. Am. Math. Soc. 149 (2021), 3173-3176. DOI 10.1090/proc/15432 | MR 4273125 | Zbl 1473.15031
[17] Sznajder, R.: A representation theorem for the Lorentz cone automorphisms. J. Optim. Theory Appl. 202 (2024), 296-302. DOI 10.1007/s10957-022-02118-8 | MR 4775763
[18] Tam, B.-S.: On the structure of the cone of positive operators. Linear Algebra Appl. 167 (1992), 65-85. DOI 10.1016/0024-3795(92)90339-C | MR 1155442 | Zbl 0755.15010
Partner of
EuDML logo