Previous |  Up |  Next

Article

Title: Area differences under analytic maps and operators (English)
Author: Çelik, Mehmet
Author: Duane-Tessier, Luke
Author: Marcial Rodriguez, Ashley
Author: Rodriguez, Daniel
Author: Shaw, Aden
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 817-838
Summary lang: English
.
Category: math
.
Summary: Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping $h$ and that of $zh$, we study various $L^2$ norms for $T_{\varphi }(h)$, where $T_{\varphi }$ is the Toeplitz operator with symbol $\varphi $. In Theorem \ref {thm:Transitivity}, given polynomials $p$ and $q$ we find a symbol $\varphi $ such that $T_{\varphi }(p)=q$. We extend some of our results to the polydisc. (English)
Keyword: unit disk
Keyword: polydisc
Keyword: polynomial
Keyword: Toeplitz operator
Keyword: Bergman projection
MSC: 30H05
MSC: 30J99
MSC: 32A36
MSC: 47B35
idZBL: Zbl 07953680
idMR: MR4804962
DOI: 10.21136/CMJ.2024.0023-24
.
Date available: 2024-10-03T12:37:43Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152583
.
Reference: [1] Ahlfors, L.: Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable.AMS Chelsea Publishing 385. AMS, Providence (2021). Zbl 1477.30001, MR 4506522
Reference: [2] Bambico, H. K., Çelik, M., Gross, S. T., Hall, F.: Generalization of the excess area and its geometric interpretation.New York J. Math. 28 (2022), 1230-1255. Zbl 1503.31001, MR 4474183
Reference: [3] Bell, S. R.: Biholomorphic mappings and the $\bar \partial$-problem.Ann. Math. (2) 114 (1981), 103-113. Zbl 0423.32009, MR 625347, 10.2307/1971379
Reference: [4] Bell, S., Catlin, D.: Boundary regularity of proper holomorphic mappings.Duke Math. J. 49 (1982), 385-396. Zbl 0475.32011, MR 659947, 10.1215/S0012-7094-82-04924-9
Reference: [5] Boas, H. P.: Holomorphic reproducing kernels in Reinhardt domains.Pac. J. Math. 112 (1984), 273-292. Zbl 0497.32021, MR 743985, 10.2140/pjm.1984.112.273
Reference: [6] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables.AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). Zbl 0963.32001, MR 1800297, 10.1090/amsip/019
Reference: [7] Conway, J. B.: Functions of One Complex Variable.Graduate Texts in Mathematics 11. Springer, Berlin (1978). Zbl 0277.30001, MR 503901, 10.1007/978-1-4615-9972-2
Reference: [8] D'Angelo, J. P.: Inequalities from Complex Analysis.The Carus Mathematical Monographs 28. Mathematical Association of America, Washington (2002). Zbl 0996.30001, MR 1899123, 10.5948/UPO9780883859704
Reference: [9] D'Angelo, J. P.: Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry.Cornerstones. Springer, Cham (2019). Zbl 1428.42001, MR 3931729, 10.1007/978-3-030-16514-7
Reference: [10] Diederich, K., Fornaess, J. E.: Boundary regularity of proper holomorphic mappings.Invent. Math. 67 (1982), 363-384. Zbl 0501.32010, MR 664111, 10.1007/BF01398927
Reference: [11] Folland, G. B.: Introduction to Partial Differential Equations.Princeton University Press, Princeton (1995). Zbl 0841.35001, MR 1357411, 10.1515/9780691213033
Reference: [12] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications.Pure and Applied Mathematics. John Wiley & Sons, New York (1999). Zbl 0924.28001, MR 1681462
Reference: [13] Greene, R. E., Krantz, S. G.: Function Theory of One Complex Variable.Graduate Studies in Mathematics 40. AMS, Providence (2006). Zbl 1114.30001, MR 2215872, 10.1090/gsm/040
Reference: [14] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces.Graduate Texts in Mathematics 199. Springer, Berlin (2000). Zbl 0955.32003, MR 1758653, 10.1007/978-1-4612-0497-8
Reference: [15] Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable.Graduate Texts in Mathematics 25. Springer, Berlin (1975). Zbl 0307.28001, MR 367121, 10.1007/978-3-642-88044-5
Reference: [16] Krantz, S. G.: Function Theory of Several Complex Variables.AMS, Providence (2001). Zbl 1087.32001, MR 1846625, 10.1090/chel/340
Reference: [17] Ravisankar, S., Zeytuncu, Y. E.: A note on smoothing properties of the Bergman projection.Int. J. Math. 27 (2016), Article ID 1650087, 10 pages. Zbl 1367.32006, MR 3570372, 10.1142/S0129167X16500877
Reference: [18] Straube, E. J.: Exact regularity of Bergman, Szegő and Sobolev space projections in nonpseudoconvex domains.Math. Z. 192 (1986), 117-128. Zbl 0573.46018, MR 835396, 10.1007/BF01162025
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo