Previous |  Up |  Next

Article

Title: Nonoscillatory solutions of discrete fractional order equations with positive and negative terms (English)
Author: Alzabut, Jehad
Author: Grace, Said Rezk
Author: Selvam, A. George Maria
Author: Janagaraj, Rajendran
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 461-479
Summary lang: English
.
Category: math
.
Summary: This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin{align} \Delta ^{\gamma }u(\kappa )&+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=&\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^{\nu }(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb {N}_{1-\gamma },\\ u_{0} =&c_{0}, \end{align} where $\mathbb {N}_{1-\gamma }=\{1-\gamma ,2-\gamma ,3-\gamma ,\cdots \}$, $0<\gamma \leq 1$, $\Delta ^{\gamma }$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results. (English)
Keyword: fractional difference equation
Keyword: nonoscillatory
Keyword: Caputo fractional difference
Keyword: forcing term
MSC: 26A33
MSC: 39A10
MSC: 39A13
MSC: 39A21
idZBL: Zbl 07790597
idMR: MR4673831
DOI: 10.21136/MB.2022.0157-21
.
Date available: 2023-11-23T12:34:39Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151968
.
Reference: [1] Alzabut, J., Abdeljawad, T.: Sufficient conditions for the oscillation of nonlinear fractional difference equations.J. Fract. Calc. Appl. 5 (2014), 177-187. Zbl 07444530, MR 3234107
Reference: [2] Alzabut, J., Abdeljawad, T., Alrabaiah, H.: Oscillation criteria for forced and damped nabla fractional difference equations.J. Comput. Anal. Appl. 24 (2018), 1387-1394. MR 3753400
Reference: [3] Alzabut, J., Muthulakshmi, V., Özbekler, A., Ad\igüzel, H.: On the oscillation of nonlinear fractional difference equations with damping.Mathematics 7 (2019), Article ID 687, 14 pages. 10.3390/math7080687
Reference: [4] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena.Eur. Phys. J. Plus 133 (2018), Article ID 166, 22 pages. 10.1140/epjp/i2018-12021-3
Reference: [5] At\icı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus.Int. J. Difference Equ. 2 (2007), 165-176. MR 2493595
Reference: [6] At\icı, F. M., Şengül, S.: Modeling with fractional difference equations.J. Math. Anal. Appl. 369 (2010), 1-9. Zbl 1204.39004, MR 2643839, 10.1016/j.jmaa.2010.02.009
Reference: [7] Chatzarakis, G. E., Selvam, A. G. M., Janagaraj, R., Miliaras, G. N.: Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term.Math. Slovaca 70 (2020), 1165-1182. Zbl 1479.39010, MR 4156816, 10.1515/ms-2017-0422
Reference: [8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations.Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 39, 18 pages. Zbl 1340.26013, MR 2805759, 10.14232/ejqtde.2011.1.39
Reference: [9] Elaydi, S. N.: An Introduction to Difference Equations.Undergraduate Texts in Mathematics. Springer, New York (2005). Zbl 1071.39001, MR 2128146, 10.1007/0-387-27602-5
Reference: [10] Grace, S. R., Graef, J. R., Tunç, E.: On the boundedness of nonoscillatory solutions of certain fractional differential equations with positive and negative terms.Appl. Math. Lett. 97 (2019), 114-120. Zbl 1425.34012, MR 3957498, 10.1016/J.AML.2019.05.032
Reference: [11] Grace, S. R., Zafer, A.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations.Eur. Phys. J. Spec. Top. 226 (2017), 3657-3665. MR 3783546, 10.1140/epjst/e2018-00043-1
Reference: [12] Graef, J. R., Grace, S. R., Tunç, E.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations with positive and negative terms.Opusc. Math. 40 (2020), 227-239. Zbl 1437.34006, MR 4087615, 10.7494/OpMath.2020.40.2.227
Reference: [13] Holm, M.: The Theory of Discrete Fractional Calculus: Development and Application.University of Nebraska, Lincoln (2011). MR 2873503
Reference: [14] Holte, J. M.: Discrete Gronwall lemma and applications.MAA North Central Section Meeting at the University of North Dakota. Available at http://homepages.gac.edu/ {holte/publications/GronwallLemma.pdf} (2009), 1-8.
Reference: [15] Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T.: The role of fractional calculus in modeling biological phenomena: A review.Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141-159. Zbl 1467.92050, MR 3645874, 10.1016/j.cnsns.2017.04.001
Reference: [16] Kumar, D., Baleanu, D.: Editorial.Fractional Calculus and Its Applications in Physics Frontiers in Physics 7. Frontiers Media, London (2019), 1-4. 10.3389/fphy.2019.00081
Reference: [17] Selvam, A. G. M., Alzabut, J., Janagaraj, R., Adiguzel, H.: Oscillation analysis for nonlinear discrete fractional order delay and neutral equations with forcing term.Dyn. Syst. Appl. 29 (2020), 327-342. 10.46719/dsa20202929
Reference: [18] Selvam, A. G. M., Jacintha, M., Janagaraj, R.: Existence of nonoscillatory solutions of nonlinear neutral delay difference equation of fractional order.Adv. Math. Sci. J. 9 (2020), 4971-4983. 10.37418/amsj.9.7.62
Reference: [19] Selvam, A. G. M., Janagaraj, R.: Oscillation criteria of a class of fractional order damped difference equations.Int. J. Appl. Math. 32 (2019), 433-441. 10.12732/ijam.v32i3.5
Reference: [20] Selvam, A. G. M., Janagaraj, R.: New oscillation criteria for discrete fractional order forced nonlinear equations.J. Phys., Conf. Ser. 1597 (2020), Article ID 012057, 8 pages. 10.1088/1742-6596/1597/1/012057
Reference: [21] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering.Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231. Zbl 07265270, 10.1016/j.cnsns.2018.04.019
.

Files

Files Size Format View
MathBohem_148-2023-4_3.pdf 262.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo