Previous |  Up |  Next

Article

Title: Oscillation criteria for two dimensional linear neutral delay difference systems (English)
Author: Tripathy, Arun Kumar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 447-460
Summary lang: English
.
Category: math
.
Summary: In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form $$ \Delta \left [\begin{matrix} x(n)+p(n)x(n-m)\\ y(n)+p(n)y(n-m) \end{matrix} \right ]= \left [\begin{matrix} a(n) & b(n) \\ c(n) & d(n) \end{matrix} \right ]\left [\begin{matrix} x(n-\alpha )\\ y(n-\beta ) \end{matrix} \right ] $$ are established, where $m>0$, $\alpha \geq 0$, $\beta \geq 0$ are integers and $a(n)$, $b(n)$, $c(n)$, $d(n)$, $p(n)$ are sequences of real numbers. (English)
Keyword: oscillation
Keyword: nonoscillation
Keyword: system of neutral equations
Keyword: Krasnoselskii's fixed point theorem
MSC: 34C10
MSC: 34K11
MSC: 39A13
idZBL: Zbl 07790596
idMR: MR4673830
DOI: 10.21136/MB.2022.0048-21
.
Date available: 2023-11-23T12:33:35Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151967
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications.Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). Zbl 0952.39001, MR 1740241, 10.1201/9781420027020
Reference: [2] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory.Hindawi Publishing, New York (2005). Zbl 1084.39001, MR 2179948, 10.1155/9789775945198
Reference: [3] Agarwal, R. P., Wong, P. J. Y.: Advanced Topics in Difference Equations.Mathematics and Its Applications (Dordrecht) 404. Kluwer Academic, Dordrecht (1997). Zbl 0878.39001, MR 1447437, 10.1007/978-94-015-8899-7
Reference: [4] Chatzarakis, G. E., Groumpas, E. I.: Oscillations in systems of difference equations.Far East J. Dyn. Syst. 17 (2011), 17-31. Zbl 1248.39011, MR 2934471
Reference: [5] Diblík, J., Łupińska, B., Růžičková, M., Zonenberg, J.: Bounded and unbounded non-oscillatory solutions of a four-dimensional nonlinear neutral difference systems.Adv. Difference Equ. 2015 (2015), Article ID 319, 11 pages. Zbl 1422.39007, MR 3412562, 10.1186/s13662-015-0662-9
Reference: [6] Elaydi, S. N.: An Introduction to Difference Equations.Undergraduate Texts in Mathematics. Springer, New York (1996). Zbl 0840.39002, MR 1410259, 10.1007/978-1-4757-9168-6
Reference: [7] Graef, J. R., Thandapani, E.: Oscillation of two-dimensional difference systems.Comput. Math. Appl. 38 (1999), 157-165. Zbl 0964.39012, MR 1713170, 10.1016/S0898-1221(99)00246-1
Reference: [8] Jiang, J., Tang, X.: Oscillation and asymptotic behaviour of two-dimensional difference systems.Comput. Math. Appl. 54 (2007), 1240-1249. Zbl 1148.39005, MR 2397675, 10.1016/j.camwa.2005.10.020
Reference: [9] Li, W.-T.: Classification schemes for nonoscillatory solutons of two-dimensional nonlinear difference systems.Comput. Math. Appl. 42 (2001), 341-355. Zbl 1006.39013, MR 1837996, 10.1016/S0898-1221(01)00159-6
Reference: [10] Migda, M., Schmeidel, E., Zdanowicz, M.: Periodic solutions of a 2-dimensional system of neutral difference equations.Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 359-367. Zbl 1377.39023, MR 3721848, 10.3934/dcdsb.2018024
Reference: [11] Parhi, N., Tripathy, A. K.: Oscillatory behavior of second order difference equations.Commun. Appl. Nonlinear Anal. 6 (1999), 79-100. Zbl 1110.39303, MR 1665966
Reference: [12] Parhi, N., Tripathy, A. K.: Oscillation of a class of neutral difference equations of first order.J. Difference Equ. Appl. 9 (2003), 933-946. Zbl 1135.39301, MR 1996344, 10.1080/1023619021000047680
Reference: [13] Parhi, N., Tripathy, A. K.: Oscillation of forced nonlinear neutral delay difference equations of first order.Czech. Math. J. 53 (2003), 83-101. Zbl 1016.39011, MR 1962001, 10.1023/A:1022975525370
Reference: [14] Schmeidel, E.: Oscillation of nonlinear three-dimensional difference systems with delays.Math. Bohem. 135 (2010), 163-170. Zbl 1224.39019, MR 2723083, 10.21136/MB.2010.140693
Reference: [15] Schmeidel, E., Zdanowicz, M.: Existence of the asymptotically periodic solution to the system of nonlinear neutral difference equations.Tatra Mt. Math. Publ. 79 (2021), 149-162. Zbl 07460182, MR 4378750, 10.2478/tmmp-2021-0025
Reference: [16] Stević, S., Diblík, J., Iričanin, J., Šmarda, B. Z.: On a third-order system of difference equations with variable coefficients.Abstr. Appl. Anal. 2012 (2012), Article ID 508523, 22 pages. Zbl 1242.39011, MR 2926886, 10.1155/2012/508523
Reference: [17] Tripathy, A. K.: Oscillation criteria for first-order systems of linear difference equations.Electron. J. Differ. Equ. 2009 (2009), Article ID 29, 11 pages. Zbl 1165.39013, MR 2481103
.

Files

Files Size Format View
MathBohem_148-2023-4_2.pdf 236.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo