Title:
|
Oscillation criteria for two dimensional linear neutral delay difference systems (English) |
Author:
|
Tripathy, Arun Kumar |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
148 |
Issue:
|
4 |
Year:
|
2023 |
Pages:
|
447-460 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form $$ \Delta \left [\begin{matrix} x(n)+p(n)x(n-m)\\ y(n)+p(n)y(n-m) \end{matrix} \right ]= \left [\begin{matrix} a(n) & b(n) \\ c(n) & d(n) \end{matrix} \right ]\left [\begin{matrix} x(n-\alpha )\\ y(n-\beta ) \end{matrix} \right ] $$ are established, where $m>0$, $\alpha \geq 0$, $\beta \geq 0$ are integers and $a(n)$, $b(n)$, $c(n)$, $d(n)$, $p(n)$ are sequences of real numbers. (English) |
Keyword:
|
oscillation |
Keyword:
|
nonoscillation |
Keyword:
|
system of neutral equations |
Keyword:
|
Krasnoselskii's fixed point theorem |
MSC:
|
34C10 |
MSC:
|
34K11 |
MSC:
|
39A13 |
idZBL:
|
Zbl 07790596 |
idMR:
|
MR4673830 |
DOI:
|
10.21136/MB.2022.0048-21 |
. |
Date available:
|
2023-11-23T12:33:35Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151967 |
. |
Reference:
|
[1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications.Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). Zbl 0952.39001, MR 1740241, 10.1201/9781420027020 |
Reference:
|
[2] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory.Hindawi Publishing, New York (2005). Zbl 1084.39001, MR 2179948, 10.1155/9789775945198 |
Reference:
|
[3] Agarwal, R. P., Wong, P. J. Y.: Advanced Topics in Difference Equations.Mathematics and Its Applications (Dordrecht) 404. Kluwer Academic, Dordrecht (1997). Zbl 0878.39001, MR 1447437, 10.1007/978-94-015-8899-7 |
Reference:
|
[4] Chatzarakis, G. E., Groumpas, E. I.: Oscillations in systems of difference equations.Far East J. Dyn. Syst. 17 (2011), 17-31. Zbl 1248.39011, MR 2934471 |
Reference:
|
[5] Diblík, J., Łupińska, B., Růžičková, M., Zonenberg, J.: Bounded and unbounded non-oscillatory solutions of a four-dimensional nonlinear neutral difference systems.Adv. Difference Equ. 2015 (2015), Article ID 319, 11 pages. Zbl 1422.39007, MR 3412562, 10.1186/s13662-015-0662-9 |
Reference:
|
[6] Elaydi, S. N.: An Introduction to Difference Equations.Undergraduate Texts in Mathematics. Springer, New York (1996). Zbl 0840.39002, MR 1410259, 10.1007/978-1-4757-9168-6 |
Reference:
|
[7] Graef, J. R., Thandapani, E.: Oscillation of two-dimensional difference systems.Comput. Math. Appl. 38 (1999), 157-165. Zbl 0964.39012, MR 1713170, 10.1016/S0898-1221(99)00246-1 |
Reference:
|
[8] Jiang, J., Tang, X.: Oscillation and asymptotic behaviour of two-dimensional difference systems.Comput. Math. Appl. 54 (2007), 1240-1249. Zbl 1148.39005, MR 2397675, 10.1016/j.camwa.2005.10.020 |
Reference:
|
[9] Li, W.-T.: Classification schemes for nonoscillatory solutons of two-dimensional nonlinear difference systems.Comput. Math. Appl. 42 (2001), 341-355. Zbl 1006.39013, MR 1837996, 10.1016/S0898-1221(01)00159-6 |
Reference:
|
[10] Migda, M., Schmeidel, E., Zdanowicz, M.: Periodic solutions of a 2-dimensional system of neutral difference equations.Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 359-367. Zbl 1377.39023, MR 3721848, 10.3934/dcdsb.2018024 |
Reference:
|
[11] Parhi, N., Tripathy, A. K.: Oscillatory behavior of second order difference equations.Commun. Appl. Nonlinear Anal. 6 (1999), 79-100. Zbl 1110.39303, MR 1665966 |
Reference:
|
[12] Parhi, N., Tripathy, A. K.: Oscillation of a class of neutral difference equations of first order.J. Difference Equ. Appl. 9 (2003), 933-946. Zbl 1135.39301, MR 1996344, 10.1080/1023619021000047680 |
Reference:
|
[13] Parhi, N., Tripathy, A. K.: Oscillation of forced nonlinear neutral delay difference equations of first order.Czech. Math. J. 53 (2003), 83-101. Zbl 1016.39011, MR 1962001, 10.1023/A:1022975525370 |
Reference:
|
[14] Schmeidel, E.: Oscillation of nonlinear three-dimensional difference systems with delays.Math. Bohem. 135 (2010), 163-170. Zbl 1224.39019, MR 2723083, 10.21136/MB.2010.140693 |
Reference:
|
[15] Schmeidel, E., Zdanowicz, M.: Existence of the asymptotically periodic solution to the system of nonlinear neutral difference equations.Tatra Mt. Math. Publ. 79 (2021), 149-162. Zbl 07460182, MR 4378750, 10.2478/tmmp-2021-0025 |
Reference:
|
[16] Stević, S., Diblík, J., Iričanin, J., Šmarda, B. Z.: On a third-order system of difference equations with variable coefficients.Abstr. Appl. Anal. 2012 (2012), Article ID 508523, 22 pages. Zbl 1242.39011, MR 2926886, 10.1155/2012/508523 |
Reference:
|
[17] Tripathy, A. K.: Oscillation criteria for first-order systems of linear difference equations.Electron. J. Differ. Equ. 2009 (2009), Article ID 29, 11 pages. Zbl 1165.39013, MR 2481103 |
. |