[1] Alzabut, J., Abdeljawad, T.:
Sufficient conditions for the oscillation of nonlinear fractional difference equations. J. Fract. Calc. Appl. 5 (2014), 177-187.
MR 3234107 |
Zbl 07444530
[2] Alzabut, J., Abdeljawad, T., Alrabaiah, H.:
Oscillation criteria for forced and damped nabla fractional difference equations. J. Comput. Anal. Appl. 24 (2018), 1387-1394.
MR 3753400
[3] Alzabut, J., Muthulakshmi, V., Özbekler, A., Ad\igüzel, H.:
On the oscillation of nonlinear fractional difference equations with damping. Mathematics 7 (2019), Article ID 687, 14 pages.
DOI 10.3390/math7080687
[4] Atangana, A., Gómez-Aguilar, J. F.:
Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133 (2018), Article ID 166, 22 pages.
DOI 10.1140/epjp/i2018-12021-3
[5] At\icı, F. M., Eloe, P. W.:
A transform method in discrete fractional calculus. Int. J. Difference Equ. 2 (2007), 165-176.
MR 2493595
[7] Chatzarakis, G. E., Selvam, A. G. M., Janagaraj, R., Miliaras, G. N.:
Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term. Math. Slovaca 70 (2020), 1165-1182.
DOI 10.1515/ms-2017-0422 |
MR 4156816 |
Zbl 1479.39010
[10] Grace, S. R., Graef, J. R., Tunç, E.:
On the boundedness of nonoscillatory solutions of certain fractional differential equations with positive and negative terms. Appl. Math. Lett. 97 (2019), 114-120.
DOI 10.1016/J.AML.2019.05.032 |
MR 3957498 |
Zbl 1425.34012
[11] Grace, S. R., Zafer, A.:
On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations. Eur. Phys. J. Spec. Top. 226 (2017), 3657-3665.
DOI 10.1140/epjst/e2018-00043-1 |
MR 3783546
[13] Holm, M.:
The Theory of Discrete Fractional Calculus: Development and Application. University of Nebraska, Lincoln (2011).
MR 2873503
[15] Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T.:
The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141-159.
DOI 10.1016/j.cnsns.2017.04.001 |
MR 3645874 |
Zbl 1467.92050
[16] Kumar, D., Baleanu, D.:
Editorial. Fractional Calculus and Its Applications in Physics Frontiers in Physics 7. Frontiers Media, London (2019), 1-4.
DOI 10.3389/fphy.2019.00081
[17] Selvam, A. G. M., Alzabut, J., Janagaraj, R., Adiguzel, H.:
Oscillation analysis for nonlinear discrete fractional order delay and neutral equations with forcing term. Dyn. Syst. Appl. 29 (2020), 327-342.
DOI 10.46719/dsa20202929
[18] Selvam, A. G. M., Jacintha, M., Janagaraj, R.:
Existence of nonoscillatory solutions of nonlinear neutral delay difference equation of fractional order. Adv. Math. Sci. J. 9 (2020), 4971-4983.
DOI 10.37418/amsj.9.7.62
[19] Selvam, A. G. M., Janagaraj, R.:
Oscillation criteria of a class of fractional order damped difference equations. Int. J. Appl. Math. 32 (2019), 433-441.
DOI 10.12732/ijam.v32i3.5
[20] Selvam, A. G. M., Janagaraj, R.:
New oscillation criteria for discrete fractional order forced nonlinear equations. J. Phys., Conf. Ser. 1597 (2020), Article ID 012057, 8 pages.
DOI 10.1088/1742-6596/1597/1/012057
[21] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.:
A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231.
DOI 10.1016/j.cnsns.2018.04.019 |
Zbl 07265270