Title:
|
On locales whose countably compact sublocales have compact closure (English) |
Author:
|
Dube, Themba |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
148 |
Issue:
|
4 |
Year:
|
2023 |
Pages:
|
481-500 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference. (English) |
Keyword:
|
frame |
Keyword:
|
locale |
Keyword:
|
isocompact |
Keyword:
|
${\rm cl}$-isocompact |
Keyword:
|
fully ${\rm cl}$-isocompact |
MSC:
|
06D22 |
MSC:
|
54B10 |
MSC:
|
54D20 |
MSC:
|
54D30 |
idZBL:
|
Zbl 07790598 |
idMR:
|
MR4673832 |
DOI:
|
10.21136/MB.2022.0051-22 |
. |
Date available:
|
2023-11-23T12:35:24Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151969 |
. |
Reference:
|
[1] Bacon, P.: The compactness of countably compact spaces.Pac. J. Math. 32 (1970), 587-592 \99999DOI99999 10.2140/pjm.1970.32.587 . Zbl 0175.49503, MR 0257975, 10.2140/pjm.1970.32.587 |
Reference:
|
[2] Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame.Commentat. Math. Univ. Carol. 37 (1996), 577-587. Zbl 0881.54018, MR 1426922 |
Reference:
|
[3] Banaschewski, B., Gilmour, C.: Realcompactness and the cozero part of a frame.Appl. Categ. Struct. 9 (2001), 395-417 \99999DOI99999 10.1023/A:1011225712426 . Zbl 0978.54019, MR 1847309 |
Reference:
|
[4] Dube, T.: Characterizing realcompact locales via remainders.Georgian Math. J. 28 (2021), 59-72. Zbl 07394014, MR 4234116, 10.1515/gmj-2019-2027 |
Reference:
|
[5] Dube, T., Iliadis, S., Mill, J. van, Naidoo, I.: A pseudocompact completely regular frame which is not spatial.Order 31 (2014), 115-120 \99999DOI99999 10.1007/s11083-013-9291-7 . Zbl 1316.06010, MR 3167759 |
Reference:
|
[6] Dube, T., Naidoo, I., Ncube, C. N.: Isocompactness in the category of locales.Appl. Categ. Struct. 22 (2014), 727-739 \99999DOI99999 10.1007/s10485-013-9341-8 . Zbl 1323.06008, MR 3275271 |
Reference:
|
[7] García-Ferreira, S., Sanchis, M.: Projection maps and isocompactness.Quest. Answers Gen. Topology 19 (2001), 165-176. Zbl 1016.54016, MR 1854730 |
Reference:
|
[8] García, J. Gutiérrez, Picado, J.: On the parallel between normality and extremal disconnectedness.J. Pure Appl. Algebra 218 (2014), 784-803. Zbl 1296.06006, MR 3149635, 10.1016/j.jpaa.2013.10.002 |
Reference:
|
[9] Hasegawa, M.: On products of isocompact spaces.Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 21 (1972), 213-216. MR 0328864 |
Reference:
|
[10] Isbell, J.: Graduation and dimension in locales.Aspects of Topology London Mathematical Society Lecture Note Series 93. Cambridge University Press, Cambridge (1985), 195-210. Zbl 0555.54020, MR 0787829 |
Reference:
|
[11] Isbell, J., Kříž, I., Pultr, A., Rosický, J.: Remarks on localic groups.Categorical Algebra and its Applications Lecture Notes in Mathematics 1348. Springer, Berlin (1988), 154-172. Zbl 0661.22003, MR 0975968, 10.1007/BFb0081357 |
Reference:
|
[12] Johnstone, P. T.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). Zbl 0499.54001, MR 0698074 |
Reference:
|
[13] Picado, J., Pultr, A.: Frames and Locales: Topology without Points.Frontiers in Mathematics. Springer, Berlin (2012). Zbl 1231.06018, MR 2868166, 10.1007/978-3-0348-0154-6 |
Reference:
|
[14] Picado, J., Pultr, A., Tozzi, A.: Locales.Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory Encyclopedia of Mathematics and Its Applications 97. Cambridge University Press, Cambridge (2004), 49-101. Zbl 1080.06010, MR 2056581 |
Reference:
|
[15] Plewe, T.: Sublocale lattices.J. Pure Appl. Algebra 168 (2002), 309-326. Zbl 1004.18003, MR 1887161, 10.1016/S0022-4049(01)00100-1 |
Reference:
|
[16] Sakai, M.: On $CL$-isocompactness and weak Borel completeness.Tsukuba J. Math. 8 (1984), 377-382. Zbl 0558.54015, MR 0767968, 10.21099/tkbjm/1496160049 |
Reference:
|
[17] Walters-Wayland, J. L.: Completeness and Nearly Fine Uniform Frames: Doctoral Thesis.Catholic University of Louvain, Louvain (1995). |
. |