Previous |  Up |  Next

Article

Title: On locales whose countably compact sublocales have compact closure (English)
Author: Dube, Themba
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 481-500
Summary lang: English
.
Category: math
.
Summary: Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference. (English)
Keyword: frame
Keyword: locale
Keyword: isocompact
Keyword: ${\rm cl}$-isocompact
Keyword: fully ${\rm cl}$-isocompact
MSC: 06D22
MSC: 54B10
MSC: 54D20
MSC: 54D30
idZBL: Zbl 07790598
idMR: MR4673832
DOI: 10.21136/MB.2022.0051-22
.
Date available: 2023-11-23T12:35:24Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151969
.
Reference: [1] Bacon, P.: The compactness of countably compact spaces.Pac. J. Math. 32 (1970), 587-592 \99999DOI99999 10.2140/pjm.1970.32.587 . Zbl 0175.49503, MR 0257975, 10.2140/pjm.1970.32.587
Reference: [2] Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame.Commentat. Math. Univ. Carol. 37 (1996), 577-587. Zbl 0881.54018, MR 1426922
Reference: [3] Banaschewski, B., Gilmour, C.: Realcompactness and the cozero part of a frame.Appl. Categ. Struct. 9 (2001), 395-417 \99999DOI99999 10.1023/A:1011225712426 . Zbl 0978.54019, MR 1847309
Reference: [4] Dube, T.: Characterizing realcompact locales via remainders.Georgian Math. J. 28 (2021), 59-72. Zbl 07394014, MR 4234116, 10.1515/gmj-2019-2027
Reference: [5] Dube, T., Iliadis, S., Mill, J. van, Naidoo, I.: A pseudocompact completely regular frame which is not spatial.Order 31 (2014), 115-120 \99999DOI99999 10.1007/s11083-013-9291-7 . Zbl 1316.06010, MR 3167759
Reference: [6] Dube, T., Naidoo, I., Ncube, C. N.: Isocompactness in the category of locales.Appl. Categ. Struct. 22 (2014), 727-739 \99999DOI99999 10.1007/s10485-013-9341-8 . Zbl 1323.06008, MR 3275271
Reference: [7] García-Ferreira, S., Sanchis, M.: Projection maps and isocompactness.Quest. Answers Gen. Topology 19 (2001), 165-176. Zbl 1016.54016, MR 1854730
Reference: [8] García, J. Gutiérrez, Picado, J.: On the parallel between normality and extremal disconnectedness.J. Pure Appl. Algebra 218 (2014), 784-803. Zbl 1296.06006, MR 3149635, 10.1016/j.jpaa.2013.10.002
Reference: [9] Hasegawa, M.: On products of isocompact spaces.Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 21 (1972), 213-216. MR 0328864
Reference: [10] Isbell, J.: Graduation and dimension in locales.Aspects of Topology London Mathematical Society Lecture Note Series 93. Cambridge University Press, Cambridge (1985), 195-210. Zbl 0555.54020, MR 0787829
Reference: [11] Isbell, J., Kříž, I., Pultr, A., Rosický, J.: Remarks on localic groups.Categorical Algebra and its Applications Lecture Notes in Mathematics 1348. Springer, Berlin (1988), 154-172. Zbl 0661.22003, MR 0975968, 10.1007/BFb0081357
Reference: [12] Johnstone, P. T.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). Zbl 0499.54001, MR 0698074
Reference: [13] Picado, J., Pultr, A.: Frames and Locales: Topology without Points.Frontiers in Mathematics. Springer, Berlin (2012). Zbl 1231.06018, MR 2868166, 10.1007/978-3-0348-0154-6
Reference: [14] Picado, J., Pultr, A., Tozzi, A.: Locales.Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory Encyclopedia of Mathematics and Its Applications 97. Cambridge University Press, Cambridge (2004), 49-101. Zbl 1080.06010, MR 2056581
Reference: [15] Plewe, T.: Sublocale lattices.J. Pure Appl. Algebra 168 (2002), 309-326. Zbl 1004.18003, MR 1887161, 10.1016/S0022-4049(01)00100-1
Reference: [16] Sakai, M.: On $CL$-isocompactness and weak Borel completeness.Tsukuba J. Math. 8 (1984), 377-382. Zbl 0558.54015, MR 0767968, 10.21099/tkbjm/1496160049
Reference: [17] Walters-Wayland, J. L.: Completeness and Nearly Fine Uniform Frames: Doctoral Thesis.Catholic University of Louvain, Louvain (1995).
.

Files

Files Size Format View
MathBohem_148-2023-4_4.pdf 298.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo