Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
convex set; extremal point; exposed point; Hilbert space; Grassmann manifold
Summary:
Let ${\mathbb{V}}$ be a separable real Hilbert space, $k \in {\mathbb{N}}$ with $k < \dim {\mathbb{V}}$, and let $B$ be convex and closed in ${\mathbb{V}}$. Let ${\mathcal{P}}$ be a collection of linear $k$-subspaces of ${\mathbb{V}}$. A point $w \in B$ is called exposed by ${\mathcal{P}}$ if there is a $P \in {\mathcal{P}}$ so that $(w + P) \cap B =\{w\}$. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by ${\mathcal{P}}$ points whenever ${\mathcal{P}}$ is dense and $G_{\delta}$. In addition, we discuss the question when the set of exposed by some ${\mathcal{P}}$ points forms a $G_{\delta}$-set.
References:
[1] Asplund E.: A $k$-extreme point is the limit of $k$-exposed points. Israel J. Math. 1 (1963), 161–162. DOI 10.1007/BF02759703 | MR 0161222
[2] Barov S. T.: Smooth convex bodies in ${\mathbb{R}}^n$ with dense union of facets. Topology Proc. 58 (2021), 71–83. MR 4115754
[3] Barov S., Dijkstra J. J.: On closed sets with convex projections under somewhere dense sets of directions. Proc. Amer. Math. Soc. 137 (2009), no. 7, 2425–2435. DOI 10.1090/S0002-9939-09-09804-9 | MR 2495278
[4] Barov S., Dijkstra J. J.: On closed sets in Hilbert space with convex projections under somewhere dense sets of directions. J. Topol. Anal. 2 (2010), no. 1, 123–143. DOI 10.1142/S1793525310000252 | MR 2646993
[5] Barov S., Dijkstra J. J.: On exposed points and extremal points of convex sets in ${\mathbb{R}}^n$ and Hilbert space. Fund. Math. 232 (2016), no. 2, 117–129. DOI 10.4064/fm232-2-2 | MR 3418884
[6] Choquet G., Corson H., Klee V.: Exposed points of convex sets. Pacific J. Math. 17 (1966), no. 1, 33–43. DOI 10.2140/pjm.1966.17.33 | MR 0198176
[7] Corson H. H.: A compact convex set in $E^3$ whose exposed points are of the first category. Proc. Amer. Math. Soc. 16 (1965), no. 5, 1015–1021. MR 0180917
[8] Engelking R.: General Topology. Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[9] Gardner R. J.: Geometric Tomography. Encyclopedia Math. Appl., 58, Cambridge University Press, New York, 2006. MR 2251886
[10] Grünbaum B.: Convex Polytopes. Pure and Applied Mathematics, 16, Interscience Publishers John Wiley & Sons, New York, 1967. MR 0226496 | Zbl 1033.52001
[11] Kanellopoulos V.: On the geometric structure of convex sets with the RNP. Mathematika 50 (2003), no. 1–2, 73–85. DOI 10.1112/S0025579300014807 | MR 2136363
[12] Klee V. L.: Extremal structure of convex sets. II. Math. Z. 69 (1958), 90–104. DOI 10.1007/BF01187394 | MR 0092113
[13] Köthe G.: Topologische Räume. I. Die Grundlehren der mathematischen Wissenschaften, 107, Springer, Berlin, 1960. MR 0130551
[14] van Mill J.: The Infinite-Dimensional Topology of Function Spaces. North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001. MR 1851014 | Zbl 0969.54003
[15] Narici L., Beckenstein E.: Topological Vector Spaces. Pure Appl. Math. (Boca Raton), 296, CRC Press, Boca Raton, 2011. MR 2723563
[16] Straszewicz S.: Über exponierte Punkte abgeschlossener Punktmengen. Fund. Math. 24 (1935), no. 1, 139–143. DOI 10.4064/fm-24-1-139-143
Partner of
EuDML logo