Title:
|
More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and Hilbert space (English) |
Author:
|
Barov, Stoyu T. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
63-72 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let ${\mathbb{V}}$ be a separable real Hilbert space, $k \in {\mathbb{N}}$ with $k < \dim {\mathbb{V}}$, and let $B$ be convex and closed in ${\mathbb{V}}$. Let ${\mathcal{P}}$ be a collection of linear $k$-subspaces of ${\mathbb{V}}$. A point $w \in B$ is called exposed by ${\mathcal{P}}$ if there is a $P \in {\mathcal{P}}$ so that $(w + P) \cap B =\{w\}$. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by ${\mathcal{P}}$ points whenever ${\mathcal{P}}$ is dense and $G_{\delta}$. In addition, we discuss the question when the set of exposed by some ${\mathcal{P}}$ points forms a $G_{\delta}$-set. (English) |
Keyword:
|
convex set |
Keyword:
|
extremal point |
Keyword:
|
exposed point |
Keyword:
|
Hilbert space |
Keyword:
|
Grassmann manifold |
MSC:
|
52A07 |
MSC:
|
52A20 |
idZBL:
|
Zbl 07790582 |
idMR:
|
MR4631790 |
DOI:
|
10.14712/1213-7243.2023.018 |
. |
Date available:
|
2023-08-28T09:44:16Z |
Last updated:
|
2025-04-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151799 |
. |
Reference:
|
[1] Asplund E.: A $k$-extreme point is the limit of $k$-exposed points.Israel J. Math. 1 (1963), 161–162. MR 0161222, 10.1007/BF02759703 |
Reference:
|
[2] Barov S. T.: Smooth convex bodies in ${\mathbb{R}}^n$ with dense union of facets.Topology Proc. 58 (2021), 71–83. MR 4115754 |
Reference:
|
[3] Barov S., Dijkstra J. J.: On closed sets with convex projections under somewhere dense sets of directions.Proc. Amer. Math. Soc. 137 (2009), no. 7, 2425–2435. MR 2495278, 10.1090/S0002-9939-09-09804-9 |
Reference:
|
[4] Barov S., Dijkstra J. J.: On closed sets in Hilbert space with convex projections under somewhere dense sets of directions.J. Topol. Anal. 2 (2010), no. 1, 123–143. MR 2646993, 10.1142/S1793525310000252 |
Reference:
|
[5] Barov S., Dijkstra J. J.: On exposed points and extremal points of convex sets in ${\mathbb{R}}^n$ and Hilbert space.Fund. Math. 232 (2016), no. 2, 117–129. MR 3418884, 10.4064/fm232-2-2 |
Reference:
|
[6] Choquet G., Corson H., Klee V.: Exposed points of convex sets.Pacific J. Math. 17 (1966), no. 1, 33–43. MR 0198176, 10.2140/pjm.1966.17.33 |
Reference:
|
[7] Corson H. H.: A compact convex set in $E^3$ whose exposed points are of the first category.Proc. Amer. Math. Soc. 16 (1965), no. 5, 1015–1021. MR 0180917 |
Reference:
|
[8] Engelking R.: General Topology.Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[9] Gardner R. J.: Geometric Tomography.Encyclopedia Math. Appl., 58, Cambridge University Press, New York, 2006. MR 2251886 |
Reference:
|
[10] Grünbaum B.: Convex Polytopes.Pure and Applied Mathematics, 16, Interscience Publishers John Wiley & Sons, New York, 1967. Zbl 1033.52001, MR 0226496 |
Reference:
|
[11] Kanellopoulos V.: On the geometric structure of convex sets with the RNP.Mathematika 50 (2003), no. 1–2, 73–85. MR 2136363, 10.1112/S0025579300014807 |
Reference:
|
[12] Klee V. L.: Extremal structure of convex sets. II.Math. Z. 69 (1958), 90–104. MR 0092113, 10.1007/BF01187394 |
Reference:
|
[13] Köthe G.: Topologische Räume. I.Die Grundlehren der mathematischen Wissenschaften, 107, Springer, Berlin, 1960. MR 0130551 |
Reference:
|
[14] van Mill J.: The Infinite-Dimensional Topology of Function Spaces.North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001. Zbl 0969.54003, MR 1851014 |
Reference:
|
[15] Narici L., Beckenstein E.: Topological Vector Spaces.Pure Appl. Math. (Boca Raton), 296, CRC Press, Boca Raton, 2011. MR 2723563 |
Reference:
|
[16] Straszewicz S.: Über exponierte Punkte abgeschlossener Punktmengen.Fund. Math. 24 (1935), no. 1, 139–143. 10.4064/fm-24-1-139-143 |
. |