Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
metric tree; Gromov--Hausdorff distance
Summary:
Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.
References:
[1] Berestovskiĭ V. N.: On the Urysohn's $\mathbb{R}$-tree. Sibirsk. Mat. Zh. 60 (2019), no. 1, 14–27 (Russian); translation in Sib. Math. J. 60 (2019), no. 1, 10–19. DOI 10.33048/smzh.2019.60.102 | MR 3919159
[2] Bridson M. R., Haefliger A.: Metric Spaces of Non-positive Curvature. Grundlehren der mathematischen Wissenschaften, 319, Springer, Berlin, 1999. MR 1744486
[3] Evans S. N.: Probability and Real Trees. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 2005, Lecture Notes in Mathematics, 1920, Springer, Berlin, 2008. MR 2351587
[4] Herron D. A.: Gromov–Hausdorff distance for pointed metric spaces. J. Anal. 24 (2016), no. 1, 1–38. DOI 10.1007/s41478-016-0001-x | MR 3755806
[5] Ishiki Y.: An interpolation of metrics and spaces of metrics. available at arXiv:2003.13227v1 [math.MG] (2020), 23 pages.
[6] Ishiki Y.: Branching geodesics of the Gromov–Hausdorff distance. Anal. Geom. Metr. Spaces 10 (2022), no. 1, 109–128. DOI 10.1515/agms-2022-0136 | MR 4462891
[7] Ishiki Y.: Continua in the Gromov–Hausdorff space. Topology Appl. 312 (2022), Paper No. 108058, 10 pages. DOI 10.1016/j.topol.2022.108058 | MR 4387932
[8] Ishiki Y.: Fractal dimensions in the Gromov–Hausdorff space. available at arXiv: 2110.01881v5 [math.MG] (2022), 24 pages. MR 4387932
[9] Jansen D.: Notes on pointed Gromov–Hausdorff convergence. available at arXiv: 1703.09595v1 [math.MG] (2017), 48 pages.
[10] Kelly J. L.: General Topology. Graduate Texts in Mathematics, 27, Springer, New York, 1955. MR 0370454
[11] Mémoli F., Wan Z.: Characterization of Gromov-type geodesics. available at arXiv: 2105.05369v2 [math.MG] (2021), 58 pages. MR 4568095
[12] Urysohn P.: Beispiel eines nirgends separablen metrischen raumes. Fund. Math. 9 (1927), no. 1, 119–121. DOI 10.4064/fm-9-1-119-121
Partner of
EuDML logo