[1] Alías L. J., Mastrolia P., Rigoli M.:
Maximum Principles and Geometric Applications. Springer Monographs in Mathematics, Springer, Cham, 2016.
MR 3445380
[2] Araújo J. G., Barboza W. F., de Lima H. F., Velásquez M. A. L.:
On the linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space. Beitr. Algebra Geom. 61 (2020), no. 2, 267–282.
DOI 10.1007/s13366-019-00469-4 |
MR 4090931
[3] Araújo J. G., de Lima H. F., dos Santos F. R., Velásquez M. A. L.:
Characterizations of complete linear Weingarten spacelike submanifolds in a locally symmetric semi-Riemannian manifold. Extracta Math. 32 (2017), no. 1, 55–81.
MR 3726524
[5] Beem J. K., Ehrlich P. E., Easley K. L.:
Global Lorentzian Geometry. Monographs and Textbooks in Pure and Applied Mathematics, 202, Marcel Dekker, New York, 1996.
MR 1384756 |
Zbl 0846.53001
[7] Calabi E.:
Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15 (1970), 223–230.
MR 0264210
[9] Cheng S. Y., Yau S. T.:
Maximal space-like hypersurfaces in the Lorentz–Minkowski space. Ann. of Math. (2) 104 (1976), no. 3, 407–419.
DOI 10.2307/1970963 |
MR 0431061
[11] Chern S. S., do Carmo M. P., Kobayashi S.:
Minimal submanifolds of a sphere with second fundamental form of constant length. Global Analysis, Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, 1968, Amer. Math. Soc., Providence, 1970, pages 223–230.
MR 0273546
[12] de Lima H. F., de Lima J. R.:
Characterizations of linear Weingarten spacelike hypersurfaces in Einstein spacetimes. Glasg. Math. J. 55 (2013), no. 3, 567–579.
DOI 10.1017/S0017089512000754 |
MR 3084661
[13] de Lima H. F., de Lima J. R.:
Complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space. Results Math. 63 (2013), no. 3–4, 865–876.
DOI 10.1007/s00025-012-0237-y |
MR 3057342
[14] de Lima H. F., dos Santos F. R., Araújo J. G., Velásquez M. A. L.:
Complete maximal spacelike submanifolds immersed in a locally symmetric semi-Riemannian space. Houston J. Math. 43 (2017), no. 4, 1099–1110.
MR 3766359
[15] de Lima H. F., dos Santos F. R., Gomes J. N., Velásquez M. A. L.:
On the complete spacelike hypersurfaces immersed with two distinct principal curvatures in a locally symmetric Lorentz space. Collect. Math. 67 (2016), no. 3, 379–397.
DOI 10.1007/s13348-015-0145-z |
MR 3536051
[16] de Lima H. F., dos Santos F. R., Velásquez M. A. L.:
On the umbilicity of complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space. São Paulo J. Math. Sci. 11 (2017), no. 2, 456–470.
DOI 10.1007/s40863-017-0075-7 |
MR 3716700
[17] Galloway G. J., Senovilla J. M. M.:
Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Classical Quantum Gravity 27 (2010), no. 15, 152002, 10 pages.
DOI 10.1088/0264-9381/27/15/152002 |
MR 2659235
[19] Hawking S. W., Ellis G. F. R.:
The Large Scale Structure of Space-time. Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London, 1973.
MR 4615777
[20] Ishihara T.:
Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. Michigan Math. J. 35 (1988), no. 3, 345–352.
DOI 10.1307/mmj/1029003815 |
MR 0978304
[21] Liang Z., Zhang X.:
Spacelike hypersurfaces with negative total energy in de Sitter spacetime. J. Math. Phys. 53 (2012), no. 2, 022502, 10 pages.
DOI 10.1063/1.3682242 |
MR 2920460
[22] Liu J., Sun Z.:
On spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces. J. Math. Anal. App. 364 (2010), no. 1, 195–203.
DOI 10.1016/j.jmaa.2009.10.029 |
MR 2576063
[26] O'Neill B.:
Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983.
MR 0719023
[28] Pigola S., Rigoli M., Setti A. G.:
A Liouville-type result for quasi-linear elliptic equations on complete Riemannian manifolds. J. Funct. Anal. 219 (2005), no. 2, 400–432.
DOI 10.1016/j.jfa.2004.05.009 |
MR 2109258
[29] Pigola S., Rigoli M., Setti A. G.:
Maximum Principles on Riemannian Manifolds and Applications. Mem. Amer. Math. Soc., 174, no. 822, 2005.
MR 2116555
[30] Senovilla J. M. M.: Singularity theorems in general relativity: Achievements and open questions. in Einstein and the Changing Worldviews of Physics, Einstein Studies, 12, Birkhäuser, Boston, 2011, pages 305–316.
[33] Treibergs A. E.:
Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent. Math. 66 (1982), no. 1, 39–56.
DOI 10.1007/BF01404755 |
MR 0652645
[35] Yau S. T.:
Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), no. 7, 659–670.
DOI 10.1512/iumj.1976.25.25051 |
MR 0417452