[1] Cohn P. M.:
Universal Algebra. Mathematics and Its Applications, 6, D. Reidel Publishing Co., Dordrecht, 1981.
MR 0620952 |
Zbl 0461.08001
[2] Fournier J.-C.:
Introduction à la notion de matroïde. Géométrie combinatoire, Mathematical Publications of Orsay 79, 3, Université de Paris-Sud, Département de Mathématique, Orsay, 1979, pages 57 (French).
MR 0551494
[4] Hodges W.:
Krull implies Zorn. J. London Math. Soc. (2) 19 (1979), no. 2, 285–287.
MR 0533327
[6] Howard P.:
Bases, spanning sets, and the axiom of choice. MLQ Math. Log. Q. 53 (2007), no. 3, 247–254.
MR 2330594 |
Zbl 1121.03064
[8] Jech T. J.:
The Axiom of Choice. Studies in Logic and the Foundations of Mathematics, 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1973.
MR 0396271 |
Zbl 0259.02052
[9] Klee V.:
The greedy algorithm for finitary and cofinitary matroids. Combinatorics, Proc. Symp. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif. 1968, Amer. Math. Soc., Providence, 1971, pages 137–152.
MR 0332538
[10] Morillon M.:
Linear forms and axioms of choice. Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421–431.
MR 2573415 |
Zbl 1212.03034
[12] Nicoletti G., White N.:
Axiom Systems. Theory of Matroids. Encyclopedia Math. Appl., 26, Cambridge Univ. Press, Cambridge, 1986, pages 29–44.
MR 0849391
[13] Oxley J. G.:
Infinite matroids. Proc. London Math. Soc. (3) 37 (1978), no. 2, 259–272.
MR 0507607
[14] Oxley J.:
Matroid Theory. Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011.
MR 2849819
[15] Rubin H., Rubin J. E.:
Equivalents of the Axiom of Choice. Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1970.
MR 0434812
[17] Zariski O., Samuel P.:
Commutative Algebra. Vol. 1. Graduate Texts in Mathematics, 28, Springer, New York, 1975.
MR 0384768