Title:
|
Hyperplanes in matroids and the axiom of choice (English) |
Author:
|
Morillon, Marianne |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
63 |
Issue:
|
4 |
Year:
|
2022 |
Pages:
|
423-441 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that in set theory without the axiom of choice ZF, the statement sH: ``Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it'' implies AC$^{\rm fin}$, the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC$^{\rm fin}$ in terms of ``graphic'' matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice? (English) |
Keyword:
|
axiom of choice |
Keyword:
|
finitary matroid |
Keyword:
|
circuit |
Keyword:
|
hyperplane |
Keyword:
|
graph |
MSC:
|
03E25 |
MSC:
|
05B99 |
idZBL:
|
Zbl 07729552 |
idMR:
|
MR4577876 |
DOI:
|
10.14712/1213-7243.2023.010 |
. |
Date available:
|
2023-04-20T13:47:50Z |
Last updated:
|
2025-01-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151644 |
. |
Reference:
|
[1] Cohn P. M.: Universal Algebra.Mathematics and Its Applications, 6, D. Reidel Publishing Co., Dordrecht, 1981. Zbl 0461.08001, MR 0620952 |
Reference:
|
[2] Fournier J.-C.: Introduction à la notion de matroïde.Géométrie combinatoire, Mathematical Publications of Orsay 79, 3, Université de Paris-Sud, Département de Mathématique, Orsay, 1979, pages 57 (French). MR 0551494 |
Reference:
|
[3] Higgs D. A.: Matroids and duality.Colloq. Math. 20 (1969), 215–220. MR 0274315, 10.4064/cm-20-2-215-220 |
Reference:
|
[4] Hodges W.: Krull implies Zorn.J. London Math. Soc. (2) 19 (1979), no. 2, 285–287. MR 0533327 |
Reference:
|
[5] Höft H., Howard P.: A graph theoretic equivalent to the axiom of choice.Z. Math. Logik Grundlagen Math. 19 (1973), 191. MR 0316283, 10.1002/malq.19730191103 |
Reference:
|
[6] Howard P.: Bases, spanning sets, and the axiom of choice.MLQ Math. Log. Q. 53 (2007), no. 3, 247–254. Zbl 1121.03064, MR 2330594 |
Reference:
|
[7] Howard P., Rubin J. E.: Consequences of the Axiom of Choice.Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl 0947.03001, MR 1637107, 10.1090/surv/059 |
Reference:
|
[8] Jech T. J.: The Axiom of Choice.Studies in Logic and the Foundations of Mathematics, 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1973. Zbl 0259.02052, MR 0396271 |
Reference:
|
[9] Klee V.: The greedy algorithm for finitary and cofinitary matroids.Combinatorics, Proc. Symp. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif. 1968, Amer. Math. Soc., Providence, 1971, pages 137–152. MR 0332538 |
Reference:
|
[10] Morillon M.: Linear forms and axioms of choice.Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421–431. Zbl 1212.03034, MR 2573415 |
Reference:
|
[11] Morillon M.: Multiple choices imply the Ingleton and Krein–Milman axioms.J. Symb. Log. 85 (2020), no. 1, 439–455. MR 4085068, 10.1017/jsl.2019.48 |
Reference:
|
[12] Nicoletti G., White N.: Axiom Systems. Theory of Matroids.Encyclopedia Math. Appl., 26, Cambridge Univ. Press, Cambridge, 1986, pages 29–44. MR 0849391 |
Reference:
|
[13] Oxley J. G.: Infinite matroids.Proc. London Math. Soc. (3) 37 (1978), no. 2, 259–272. MR 0507607 |
Reference:
|
[14] Oxley J.: Matroid Theory.Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011. MR 2849819 |
Reference:
|
[15] Rubin H., Rubin J. E.: Equivalents of the Axiom of Choice.Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1970. MR 0434812 |
Reference:
|
[16] Welsh D. J. A.: Matroid Theory.L. M. S. Monographs, 8, Academic Press, London, 1976. Zbl 0343.05002, MR 0427112 |
Reference:
|
[17] Zariski O., Samuel P.: Commutative Algebra. Vol. 1.Graduate Texts in Mathematics, 28, Springer, New York, 1975. MR 0384768 |
. |