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Hyperplanes in matroids and the axiom of choice

Marianne Morillon

Abstract. We show that in set theory without the axiom of choice ZF, the state-
ment sH: “Every proper closed subset of a finitary matroid is the intersection

of hyperplanes including it” implies ACfin, the axiom of choice for (nonempty)
finite sets. We also provide an equivalent of the statement ACfin in terms of

“graphic” matroids. Several open questions stay open in ZF, for example: does

sH imply the axiom of choice?

Keywords: axiom of choice; finitary matroid; circuit; hyperplane; graph

Classification: 03E25, 05B99

1. Introduction

A choice function for a family (Ai)i∈I of nonempty sets is a family (xi)i∈I
such that for every i ∈ I, xi ∈ Ai. The axiom of choice (AC) is the following

statement: “Every family of nonempty sets has a choice function.”. We work in

set theory without the axiom of choice ZF (Zermelo–Fraenkel set theory). We shall

also consider the more general set theory ZFA, see [8, pages 44–45], a modified

version of set theory, in which “atoms” (i.e. empty objects which are not sets)

are allowed. Consider the statement VB (vector basis): “Every vector space has

a basis.”, see [7, Note 75 page 271]. It is known that in ZFA, VB implies the

multiple choice axiom MC, see [7, form 67]), and that in ZF, MC is equivalent

to AC, but it is an open question to know whether VB imply AC in ZFA. In this

paper, we discuss various statements about “finitary matroids” (which can be seen

as generalizations of vector spaces, see Section 2.3.3) and their links with AC. We

show that the statement “Every finitary matroid has a basis.” is equivalent to

AC in ZFA, see Proposition 5. We then consider the three following consequences

of AC involving hyperplanes in finitary matroids, possibly satisfying the “binary

elimination property”, see Section 3.2:

sH: “Every proper flat in a finitary matroid is the intersection of hyperplanes

including it.”
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sHbep: “Every proper flat in a finitary matroid with the binary elimination

property is the intersection of hyperplanes including it.”

H: “Every nonempty finitary matroid has a hyperplane.”

It is known that AC ⇒ sH and of course sH ⇒ H and sH ⇒ sHbep. In this

paper, we shall prove that sHbep implies the following axiom of choice for finite

sets:

ACfin: (form 62 of [7]) Every nonempty family of finite nonempty sets has

a choice function. It is known, see [7], that ACfin does not imply AC and that

ACfin is not provable in ZF. We do not know whether H implies sH or sHbep or

ACfin nor do we know whether H or sH implies AC, see Figure 2 at the end of the

paper. For every natural number k ≥ 2 we consider the following consequence of

ACfin:

ACk: “For every nonempty family (Ai)i∈I of finite sets with

k-elements,
∏

i∈I Ai is nonempty.”

We also denote by for all k ACk the following statement, which is form 61 of [7]:

For every natural number k ≥ 2, for every nonempty family

(Ai)i∈I of finite sets with k-elements,
∏

i∈I Ai is nonempty.

In ZF, for every natural number n ≥ 2, AC ⇒ ACfin ⇒ for all k ACk ⇒ ACn,

and it is known, see [7], that in ZF, none of these implications is reversible, and

that ACn is not provable.

Using the natural structure of finitary matroid over a vector space, see Exam-

ple 1, H implies the following statement D: “Given a commutative field K and

a non null vector space E over K, there exists a non null linear form f : E //K”.

For every commutative field K, we denote by DK the previous statement restricted

to vector spaces over K: “For every non null K-vector space E, the algebraic dual

of E is non null.” In [10, Corollary 2], we proved that for every prime number p,

the statement DFp
(where Fp is the finite field Z/pZ) implies the statement C(p):

“For every family (Ai)i∈I of nonempty finite sets, there exists a family (Bi)i∈I
such that for every i ∈ I, Bi ⊆ Ai and p does not divide the cardinal of Bi”.

Denoting by for all p C(p) the statement for all p ∈ P C(p) where P is the set

of prime natural numbers, then for all p C(p) implies (and thus is equivalent

to) the statement for all k ACk, see [10, Remarks 3 and 4]). It follows that

sH⇒ H⇒ D⇒ for all k ACk. However, we do not know whether D implies H.

Notice that in ZFA, D does not imply ACfin, since the statement for all p MC(p),

see [7, form 218], implies the Ingleton statement I (the ultrametric counterpart of

the Hahn–Banach statement, see [11]) which implies D, but for all p MC(p) does

not imply ACfin, see Figure 2 at the end of the paper.

The paper is organized as follows. In Section 2 we review in set theory ZF

some definitions and results about operators on finite or infinite sets in the sense
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of D. A. Higgs [3] and V. Klee [9]: finitary operators, matroidal operators with

particular emphasis on circuits and hyperplanes. We introduce the three notions

of “circuit-accessibility”, “hyperplane-accessibility” and “symmetric circuits”. In

Section 3, we formulate an equivalent of AC is terms of hyperplanes in a certain

(non finitary) matroid, and we prove that the statement sH restricted to certain

binary matroids implies ACfin. Finally, in the last section, we prove that ACfin is

equivalent to various statements about “graphic” matroids. We end with several

questions about finitary matroids and AC.

2. Operators and the axiom of choice

2.1 Operators on a set.

2.1.1 Operators and their circuits. An operator on a set X, see [9, page 138],

is a mapping ϕ : P(X) // P(X) which is isotonic
(
for all subsets A, B of X,

(A ⊆ B ⇒ ϕ(A) ⊆ ϕ(B))
)

and enlarging (for every subset A of X, A ⊆ ϕ(A)).

Given an operator ϕ on a set X, a subset D of X is said to be ϕ-dependent

if there exists x ∈ D such that x ∈ ϕ(D\{x}). A subset I of X is said to be

ϕ-independent if I is not ϕ-dependent i.e. if for every x ∈ I, x /∈ ϕ(I\{x}).
Minimal ϕ-dependent subsets of X are called ϕ-circuits. A loop of the operator ϕ

on X is an element x of X such that {x} is a ϕ-circuit i.e. {x} is ϕ-dependent

i.e. x ∈ ϕ(∅). Two distinct elements x, y of X are parallel if {x, y} is a ϕ-circuit.

Remark 1. Given an operator ϕ on a set X, we have:

(1) The collection Iϕ of ϕ-independent subsets of X contains ∅ and is initial:

for all subsets A, B of X, if A ⊆ B and B ∈ Iϕ, then A ∈ Iϕ.

(2) The collection Dϕ of ϕ-dependent subsets of X does not contain ∅ and is

final: for all subsets A, B of X, if A ⊆ B and A ∈ Dϕ, then B ∈ Dϕ.

(3) The collection Cϕ of ϕ-circuits is an antichain of nonempty sets: no

member of Cϕ includes another one.

2.1.2 Finitary operators. An operator ϕ on X is said to be finitary if for

every subset Y of X and every x ∈ ϕ(Y ), there exists a finite subset F of Y

satisfying x ∈ ϕ(F ). If the operator ϕ is finitary, then every ϕ-dependent set

includes a (finite) ϕ-circuit.

Definition 1. Given two finitary operators ϕ1 and ϕ2 on sets X1 and X2 and

given a bijection f : X1
//X2, the following statements are equivalent:

(1) for every subset I of X1, I is ϕ1-independent if and only if f [I] is ϕ2-

independent;

(2) for every subset C of X1, C is a ϕ1-circuit if and only if f [C] is a ϕ2-

circuit.
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Every bijection f : X1
// X2 satisfying one of the two previous statements is

called an isomorphism of finitary operators.

2.1.3 Hyperplanes of an operator. A subset A of X is said to be ϕ-spanning

if ϕ(A) = X. Subsets of X which are both ϕ-independent and ϕ-spanning are

called bases of the operator ϕ (or ϕ-bases). Maximal non-spanning subsets of X

are called ϕ-hyperplanes. Subsets of X which are fixed points of ϕ are called

flats or closed subsets of the operator ϕ.

Remark 2. Given an operator ϕ on a set X for every nonempty family (Fi)i∈I
of ϕ-closed subsets of X,

⋂
i∈I Fi is ϕ-closed, and thus, the poset Lϕ of ϕ-closed

subsets of X endowed with the inclusion relation is a complete lattice (but it is

not an induced sub-lattice of the lattice (P(X),⊆) in general).

2.2 Minors of an operator.

2.2.1 Suboperators. Given an operator ϕ on a set X, and a subset Y of X,

the mapping ϕY : P(Y ) // P(Y ) such that for every subset Z of Y , ϕY (Z) =

ϕ(Z) ∩ Y is an operator on Y , called the suboperator induced by ϕ on Y , or the

restriction operator of ϕ to Y , see [13, page 263]. If the operator ϕ on X is

finitary, then the suboperator ϕY is also finitary.

Remark 3. Given an operator ϕ on a set X, and a subset Y of X, then:

(1) The ϕY -dependent subsets of Y are the ϕ-dependent sets that are in-

cluded in Y .

(2) The ϕY -independent subsets of Y are the ϕ-independent sets that are

included in Y .

(3) The ϕY -circuits are the ϕ-circuits that are included in Y .

2.2.2 Quotient operators. Given an operator ϕ on a set X, and a subset Y

of X, the mapping ϕY : P(Y ) // P(Y ) associating to every subset A of Y the

set Y ∩ ϕ(A ∪ (X\Y )) is an operator on Y . The operator ϕY on Y is called

the quotient operator ϕY , or the contraction operator ϕY , see [13, page 263]. If

the operator ϕ on X is finitary, then the operator ϕY is also finitary.

Proposition 1. Given an operator ϕ on a set X and a proper flat F of ϕ, then:

(1) ϕ-flats including F are subsets F ∪ Z where Z is a flat of the quotient

operator ϕX\F on X\F .

(2) ϕ-hyperplanes including F are subsets F ∪ Z where Z is a hyperplane of

the operator ϕX\F .

Proof: (1) Given a subset Z of X\F , the following sentences are equivalent:

F ∪ Z is a ϕ-flat; ϕ(F ∪ Z) ⊆ F ∪ Z; ϕ(F ∪ Z)\F ⊆ Z; ϕX\F (Z) ⊆ Z; Z is

a ϕX\F -flat subset of X\F .
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(2) Given a subset Z of X\F , the following sentences are equivalent: F ∪ Z
is a ϕ-hyperplane; (F ∪ Z) is a proper ϕ-flat but for every x ∈ X\(F ∪ Z),

ϕ((F ∪ Z) ∪ {x}) = X; Z is a proper ϕX\F -flat but for every x ∈ X\(F ∪ Z),

ϕX\F (Z ∪ {x}) = X\F ; the subset Z of X\F is a ϕX\F -hyperplane. �

Remark 4. Proposition 1 implies that given a class O of operators which is

closed by quotient operators, if every ϕ ∈ O has a hyperplane, then for every

ϕ ∈ O, every proper flat of ϕ is included in a ϕ-hyperplane.

Definition 2. Given an operator ϕ on a set X, a minor of an operator ϕ on

a set X is an operator ψ on a subset Y of X such that there exists a sequence of

operators (ϕi)0≤i≤n such that ϕ0 = ϕ, ϕn = ψ and for each i ∈ {1, . . . , n}, ϕi is

a suboperator or a quotient operator of ϕi−1.

2.3 Finitary matroidal operators.

2.3.1 Idempotency properties. A closure operator on X is an operator ϕ

on X which is idempotent, see [9, page 140]: for every subset A of X, ϕ(ϕ(A)) =

ϕ(A).

If the operator ϕ on X is idempotent, then for every subset Y of X, the

operators ϕY and ϕY are also idempotent.

Proposition 2. Given an idempotent operator ϕ on a set X, a subset H of X

is a ϕ-hyperplane if and only if H is a maximal proper ϕ-closed subset of X.

Proof: Given an operator ϕ on a set X for every ϕ-hyperplane H, then either

ϕ(H) = H, and thus H is a maximal proper ϕ-closed subset of X, or ϕ(H) is

spanning (else H ( ϕ(H) ⊆ ϕ(ϕ(H)) ( X and H would not be a ϕ-hyperplane

since ϕ(H) would be a non spanning subset of X strictly including H). It follows

that if ϕ is idempotent, then every ϕ-hyperplane is a maximal proper ϕ-closed

subset of X (else, ϕ(H) would be spanning i.e. X = ϕ(ϕ(H)) = ϕ(H) by idem-

potency, and thus H would be spanning). Reciprocally, if H is a maximal proper

ϕ-closed subset of X, then for every x ∈ X\H, ϕ(H ∪ {x}) is closed and thus

ϕ(H ∪ {x}) = X whence H is a ϕ-hyperplane. �

Definition 3. An operator ϕ on X is circuit-accessible if for every subset Y of X

and every x ∈ ϕ(Y )\Y , there exists a ϕ-circuit C such that x ∈ C ⊆ Y ∪ {x}.

Remark 5. Every finitary idempotent operator is circuit-accessible.

Proof: Let ϕ be a finitary idempotent operator on a setX. Given some subset A

of X, and some x ∈ ϕ(A)\A, let I be a minimal finite subset of A such that

x ∈ ϕ(I). Then I is independent, else there exists y ∈ I such that y ∈ ϕ(I\{y}),
whence, denoting by G the set I\{y}, x ∈ ϕ(G ∪ {y}) and thus, by idempotency
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of ϕ and since y ∈ ϕ(G), x ∈ ϕ(G) which contradicts the minimality of I. Since

I ∪ {x} is finite and dependent, there exists a ϕ-circuit C such that C ⊆ I ∪ {x}.
Since I is independent, x ∈ C and finally, x ∈ C ⊆ A ∪ {x}. It follows that ϕ is

circuit-accessible. �

2.3.2 Exchange properties. An operator ϕ on a set X is said to satisfy the

exchange property, see property (E) in [9, page 140], if for all subsets Y , Z of X

and every x ∈ X, if x ∈ ϕ(Y ∪ Z) and x /∈ ϕ(Y ), then there exists y ∈ Z such

that y ∈ ϕ
(
((Y ∪ Z)\{y}) ∪ {x}

)
.

Definition 4. Given an operator ϕ on a set X, a ϕ-circuit C is symmetric if

for every x ∈ C, x ∈ ϕ(C \{x}).

Remark 6. If an operator ϕ on a set X satisfies the exchange property, then

every ϕ-circuit is symmetric.

2.3.3 Matroidal operators (or matroids). We say that an operator ϕ on

a set X is matroidal if ϕ is idempotent and satisfies the exchange property. In

the following, the term “matroid operator” is also abbreviated to “matroid”.

Example 1 (The operator spanX associated to a vector space X). Given a vec-

tor space X over a commutative field K, the operator span on X, associating

to every subset Y of X the vector subspace generated by Y in X is a finitary

matroidal operator on X. The span-independent subsets of X are the K-linearly

independent subsets of X; the span-bases of X are the bases of the K-vector

space X; the span-flats are the vector subspaces of X, and the span-hyperplanes

of X are the kernels of non null linear forms f : X // K. The only loop of this

operator is {0X}.

Example 2 (The matroidal operator associated to a family of vectors). Given

a K-vector space X and a mapping f : I // X, the mapping ϕ : P(I) // P(I)

associating to every subset J of I the set {i ∈ I : f(i) ∈ span(f [J ])} is a finitary

matroidal operator. Loops of this operator are elements i ∈ I such that f(i) = 0X .

Two elements i, j of I are parallel if and only if i, j are not loops and if f(i)

and f(j) are colinear.

Given a (commutative) field K, a finitary matroidal operator ϕ on a set X

is said to be K-representable if there exist a K-vector space E and a mapping

f : I // E such that the matroidal operator ϕ is isomorphic with the finitary

matroidal operator associated to f .

Remark 7. There are many equivalent definitions for the notion of matroid on

a finite set, see [16, Chapter 1] or [12, Chapter 2]. Given an infinite set X, the
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notion of finitary matroidal operator on X is equivalent to the notion of “transi-

tive dependence relation” on X, see for example [17, page 97], [1, Proposition 2.1

page 253], [16, Chapter 20.5], [2, page 2]). In ZFC, finitary matroids (i.e. fini-

tary matroidal operators) have bases, but infinite matroids do not have bases in

general.

2.3.4 Hyperplane-accessibility.

Definition 5. An operator ϕ on a set X is hyperplane-accessible if every proper

flat of ϕ is the intersection of the set of the ϕ-hyperplanes including it.

Given a commutative field K, the statement DK: “Every non null vector space

has a non null linear form.” is equivalent to the statement “For every K-vector

space E, the finitary matroidal operator spanE is hyperplane-accessible.” Indeed,

we have shown in [10, Theorem 2] that DK implies that every proper subspace of

a K-vector space is the intersection of the hyperplanes including it.

2.4 Finitary operators and the axiom of choice.

2.4.1 Axiom of choice and finitary operators.

Proposition 3 ([15, pager 95] and [4]). AC is equivalent to each of the following

statements:

(1) AL′3 ([15, page 95]): “For every finitary closure operator ϕ on a set X,

for every collection F of subsets of X which has finite character (i.e. for

every subset Z of X, Z ∈ F if and only if for every finite subset Y of Z,

Y ∈ F), and for every proper ϕ-flat F of X such that F ∈ F , there exists

a maximal ϕ-flat G such that F ⊆ G and G ∈ F .”

(2) AL′′3 : “For every finitary closure operator ϕ on a set X, for every proper

ϕ-flat F of X and every x ∈ X\F , there exists a maximal ϕ-flat G such

that F ⊆ G and x /∈ G.”

(3) K (W. Krull): “Every proper ideal of commutative unitary ring is con-

tained in a maximal proper ideal.”

It follows that AC implies the statement sH: “Every finitary matroid is hyper-

plane-accessible.”

Proof: AC ⇒ AL′3: The set P := {Z ∈ F : F ⊆ Z and ϕ(Z) = Z} endowed

with the order induced by “⊆” is inductive
(
for every chain C of P ,

⋃
C ∈ P

)
and thus, Zorn’s lemma implies a maximal element G of P .

AL′3 ⇒ AL′′3 : Given a proper ϕ-flat F and x ∈ X\F , the collection F of

subsets of X which do not contain x has the finite character, and thus AL′3
implies a maximal ϕ-flat including F and not containing x.
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AL′′3 ⇒ K: Given a proper ideal I of a commutative unitary ring A, consider

the closure operator ϕ on A associating to each subset Z of A the ideal of A

generated by Z. Then ϕ is finitary, and thus AL′′3 implies a maximal ϕ-closed

subset M of A including I such that 1 /∈M .

K ⇒ AC: This implication is due to W. Hodges, see [4].

In the conditions of statement AL′′3 , if moreover ϕ satisfies the exchange prop-

erty, then G is a ϕ-hyperplane, so the statement sH is the restriction of statement

AL′′3 to finitary matroids. It follows that AC⇒ AL′′3 ⇒ sH. �

2.4.2 Axiom of choice and finitary matroids.

Definition 6. An operator ϕ on a set X is said to satisfy the interpolation prop-

erty (for bases) if for every ϕ-independent subset I of X and every ϕ-generating

subset G of X such that I ⊆ G, there exists a ϕ-basis B such that I ⊆ B ⊆ G.

A B-matroidal operator on a set X, see [3, page 217], [13, page 264]) is a ma-

troidal operator ϕ on X such that for every subset Y of X, the suboperator ϕY

satisfies the interpolation property. Of course, every suboperator of a B-matroi-

dal operator is B-matroidal.

Proposition 4 ([3, page 219]). EveryB-matroidal operator is hyperplane-accessi-

ble and circuit-accessible.

Proof: Higgs defines a “C-matroid” as a matroidal operator which is both

hyperplane-accessible and circuit-accessible. He proves that every B-matroid is

a “C-matroid”. �

Proposition 5. (1) AC is equivalent to each of the following statements:

FB0: “Every finitary matroid satisfies the interpolation property.”

FB1: “Every finitary matroid is a B-matroid.”

FB2: “Every finitary matroid has a basis.”

FB3 (form [1A] of [7]): “Given a vector space E, every generating

subset of E includes a basis of E.”

FB4 “Every connected graph has a spanning tree.”

(2) The statement H: “Every nonempty finitary matroid has a hyperplane.”

is equivalent to the statement “Every proper flat of a finitary matroid is

included in a hyperplane.”

Proof: (1) AC ⇒ FB0. Given a finitary matroidal operator ϕ on a set X,

a ϕ-independent subset I of X and a ϕ-generating subset G of X such that

I ⊆ G, consider the set J of ϕ-independent subsets J such that I ⊆ J ⊆ G.

Then the poset (J ,⊆) is inductive (every chain (Jt)t∈T of this poset is dominated

by
⋃

t∈T Jt), so with Zorn’s lemma, one gets a maximal element B of the poset
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(J ,⊆), and B is a ϕ-basis such that I ⊆ B ⊆ G. FB0 ⇒ FB1 follows from the

previous point and the fact that every submatroid of a finitary matroid is finitary.

FB1 ⇒ FB2 is trivial. FB2 ⇒ FB3: Consider a vector space E and a generating

subset G of E. The operator ϕ induced by span on G is finitary and matroidal,

and thus FB2 implies a ϕ-basis, which is a basis of the vector space E included

in G. FB3 ⇒ FB4: See [6]. FB4 ⇒ AC: See [5].

(2) Given a finitary matroidal operator ϕ on a set X, and a proper flat F of ϕ,

the statement H applied to the finitary operator ϕF provides a hyperplane Z

of ϕF , and then F ∪ Z is a ϕ-hyperplane using Proposition 1. �

3. Hyperplanes in matroids and the axiom of choice

3.1 The operator on X associated to an antichain of nonempty subsets

of X.

Definition 7. Given an antichain C of nonempty subsets of a set X, the mapping

ϕ : P(X) // P(X) associating to each subset Y of X the set Y ∪B where B is

the set of elements x ∈ X such that there exists C ∈ C satisfying x ∈ C ⊆ Y ∪{x}
is an operator on X. We call it the operator associated to the antichain C.

Proof: By definition of ϕ, the mapping ϕ is expansive; moreover ϕ is isotonic

since if Y1 ⊆ Y2 ⊆ X for every x ∈ X and every C ∈ C such that x ∈ C ⊆
Y1 ∪ {x}, then x ∈ C ⊆ Y2 ∪ {x}, thus ϕ(Y1) ⊆ ϕ(Y2). �

Proposition 6. Every circuit-accessible operator ϕ on a set X such that ϕ-

circuits are symmetric satisfies the exchange property.

Proof: Assume that Y, Z are two subsets of X and that for some x ∈ X, x ∈
ϕ(Y ∪ Z) but x /∈ ϕ(Y ). Since ϕ is circuit-accessible, let C be a ϕ-circuit such

that x ∈ C ⊆ (Y ∪Z)∪{x}. Since the circuit C is symmetric, x ∈ ϕ(C \{x}), and

thus C \{x} meets Z (else C \{x} ⊆ Y so ϕ(C \{x}) ⊆ ϕ(Y ) whence x ∈ ϕ(Y ),

which is contradictory!). Let z ∈ (C \{x}) ∩ Z; then, since the circuit C is

symmetric, z ∈ ϕ(C \{z}) ⊆ ϕ
(
((Y ∪ Z) ∪ {x})\{z}

)
. �

Lemma 1. Given an antichain C of nonempty subsets of a set X, denote by ϕ

the operator on X associated to the antichain C, see Definition 7.

(1) Each element of C is a symmetric ϕ-circuit.

(2) C is the set of ϕ-circuits, and the operator ϕ on X is circuit-accessible.

(3) The operator ϕ satisfies the exchange property.

(4) If elements of C are finite sets, then the operator ϕ is finitary.

Proof: (1) If C ∈ C, then, by definition of ϕ for every x ∈ C, x ∈ ϕ(C \{x}),
thus C is ϕ-dependent; moreover, the set I := C \{x} is ϕ-independent, else
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let y ∈ I such that y ∈ ϕ(I\{y}); then there would exist C ′ ∈ C such that

y ∈ C ′ ⊆ I ( C which is contradictory since C is an antichain.

(2) Let C be a ϕ-circuit. Then there exists x ∈ C such that x ∈ ϕ(C\{x}). By

definition of ϕ, let C ′ ∈ C such that x ∈ C ′ ⊆ (C\{x})∪{x} = C; using Point (1),

C ′ is a ϕ-circuit, and since the set of ϕ-circuits is an antichain, C ′ = C, and thus

C ∈ C. Since C is the set of ϕ-circuits, it follows by definition of ϕ that the

operator ϕ is circuit-accessible.

(3) This follows from Proposition 6 using the fact that ϕ is circuit-accessible

and has symmetric circuits.

(4) Trivial since ϕ is circuit-accessible. �

3.2 Binary matroids. A family C of subsets of a set X is said to satisfy the

binary elimination property if for all distinct elements C1, C2 of C, the symmetric

difference C1∆C2 is a union of pairwise disjoint elements of C.

Theorem 1 ([14, Theorem 9.1.2 page 344]). Given a matroidal operator ϕ on

a finite set X and denoting by C the set of ϕ-circuits, the following statements

are equivalent:

(1) The operator ϕ is representable over the two-element field F2.

(2) The symmetric difference of any set of circuits is either empty or contains

a circuit.

(3) C satisfies the binary elimination property.

(4) For all distinct circuits C1, C2 ∈ C, C1∆C2 is a (finite) union of circuits.

(5) For all distinct circuits C1, C2 ∈ C, C1∆C2 includes a circuit.

The following corollary holds in ZF for infinite finitary matroids.

Corollary 1. Given a finitary matroidal operator ϕ on a (non necessarily fi-

nite) set X and denoting by C the set of ϕ-circuits, the following statements are

equivalent:

(1) ϕ is F2-representable.

(2) Every finite submatroid of ϕ is F2-representable.

(3) C satisfies the binary elimination property.

(4) For all distinct ϕ-circuits C1, C2 ∈ C, C1∆C2 is a (finite) union of circuits.

(5) For all distinct ϕ-circuits C1, C2 ∈ C, C1∆C2 includes a circuit.

(6) The symmetric difference of any set of ϕ-circuits is either empty or con-

tains a circuit.

Proof: (1) ⇒ (2) is easy and (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) are consequences

of Theorem 1. We prove (6) ⇒ (1). We consider the vector space F2
(X) and its

canonical basis (ex)x∈X where for every x ∈ X, ex : X // F2 is the indicator

function of the singleton {x}. Let V be the vector subspace of F2
(X) generated
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by the set
{
vC :=

∑
x∈C x : C ϕ-circuit

}
. Let Q be the quotient vector space

F2
(X)/V and let f : X // Q be the quotient mapping x 7→ ex + V . The (fini-

tary) matroidal operator ψ associated to f is isomorphic with ϕ since ϕ and ψ

have the same circuits: given a subset C of X, C is a ψ-circuit if and only if∑
x∈C(ex + V ) = 0Q and for every proper subset I of C,

∑
x∈I(ex + V ) 6= 0Q;

equivalently,
∑

x∈C ex ∈ V and for every proper subset I of C,
∑

x∈I ex /∈ V ; this

means that there exist ϕ-circuits C1, . . . , Cm such that C = C1∆ . . .∆Cm and

that no proper subset I of C is the symmetric difference of a nonempty sequence

of ϕ-circuits; using (2) it means that C is a ϕ-circuit. �

Definition 8. A finitary matroid is said to be binary if it satisfies one of the

previous equivalent statements.

3.3 The matroidal operator associated to a family of pairwise disjoint

nonempty sets.

Definition 9. Given an integer n ≥ 2, a family C of subsets of a set X is said to

satisfy the n-binary elimination property if for all distinct elements C1, C2 of C,
the symmetric difference C1∆C2 is a union of at most n elements of C.

Theorem 2. Given a nonempty family (Ai)i∈I of pairwise disjoint nonempty sets,

consider the set X =
⋃

i∈I Ai ∪ {O} where O is some set such that O /∈
⋃

i∈I Ai.

For every i ∈ I, let C1
i := Ai ∪ {O}, and for all distinct elements i, j ∈ I, let

C2
i,j = Ai ∪Aj . Let C := {C1

i : i ∈ I} ∪ {C2
i,j : i, j ∈ I, i 6= j}. Then

(1) C is an antichain of nonempty subsets of X.

(2) C satisfies the 2-binary elimination property.

(3) Let ϕ be the operator associated to the antichain C. Then ϕ is finitary if

and only if for every i ∈ I, the set Ai is finite.

(4) The operator ϕ is idempotent (and thus matroidal).

Proof: Points (1), (2) and (3) are easy to check.

(4) Let Z be a subset of X. Let I1 be the set of elements i ∈ I such that Ai\Z
has at least two elements. Let I2 = I\I1. If O ∈ Z then ϕ(Z) = Z ∪

⋃
i∈I2 Ai

and thus, ϕ(ϕ(Z)) = ϕ(Z). If O /∈ Z and if there exists i0 ∈ I2 such that

Ai0 ⊆ Z, then ϕ(Z) = Z ∪ {O} ∪
⋃

i∈I2 Ai and thus, ϕ(ϕ(Z)) = ϕ(Z); if O /∈ Z
and if for every i ∈ I2, Ai\Z has exactly one element, then ϕ(Z) = Z and thus

ϕ(ϕ(Z)) = ϕ(Z). �

Definition 10. In the conditions of the previous theorem, we call ϕ the matroidal

operator associated to O and the family (Ai)i∈I .

Definition 11. Given a nonempty family (Ai)i∈I of pairwise disjoint nonempty

sets, a selector for this family is a subset S of
⋃

i∈I Ai such that for every i ∈ I,
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S ∩ Ai has at most one element; the selector S is said to be total if for every

i ∈ I, S ∩ Ai has exactly one element.

Theorem 3. Given a nonempty family (Ai)i∈I of pairwise disjoint nonempty sets,

consider the set X =
⋃

i∈I Ai ∪ {O} where O is some set such that O /∈
⋃

i∈I Ai.

Let ϕ be the matroidal operator associated to O and the family (Ai)i∈I .

(1) A subset L of X is ϕ-independent if and only if either (O ∈ L and for all

i ∈ IAi 6⊆ L), or (O /∈ L and there exists at most one element i0 ∈ I such

that Ai0 ⊆ L).

(2) A subset G of X is ϕ-generating if and only if S :=
(⋃

i∈I Ai

)
\G is

a selector for the family (Ai)i∈I , which is not total if O /∈ G.

(3) A subset B of X is a ϕ-basis if and only if there exists a total selector S

for the family (Ai)i∈I such that B =
((⋃

i∈I Ai

)
\S
)
∪ {a} where a is

some element of {O} ∪ S.

(4) A proper subset F of X is a ϕ-flat if and only if (O ∈ F or exists

i0 ∈ I Ai0 ⊆ F )⇒ for all i ∈ I Ai\F is not a singleton.

(5) A subset H of X is a ϕ-hyperplane if and only if H =
(⋃

i∈I Ai

)
\S

where S is a total selector for the family (Ai)i∈I , or H = X\{x, y} where

i0 ∈ I and x, y ∈ Ai0 with x 6= y.

(6) The following statements are equivalent:

(a) The operator ϕ is hyperplane-accessible.

(b) Every family (Bi)i∈I such that for every i ∈ I, ∅ ( Bi ⊆ Ai has

a total selector.

(c) The operator ϕ is B-matroidal.

(d) The operator ϕ satisfies the interpolation property for bases.

Proof: Points (1), (2), (3), (4) and (5) are consequences of the definitions. We

prove Point (6). (a) ⇒ (b): Given a family (Bi)i∈I such that for every i ∈ I,

∅ ( Bi ⊆ Ai, consider the proper ϕ-flat subset F :=
⋃

i∈I(Ai\Bi) of X; since ϕ

is hyperplane-accessible, let H be a ϕ-hyperplane such that F ⊆ H and O /∈ H;

then
⋃

i∈I(Ai\H) is a total selector for the family (Bi)i∈I .

(b) ⇒ (c): Let Y be a subset of X. Let L be a ϕ-independent subset of Y

and let G be a ϕY -generating subset of Y such that L ⊆ G. Let J := {i ∈ I :

Y ∩Ai 6= ∅}. Let J1 := {i ∈ J : Ai 6⊆ G}. Let J2 = {i ∈ J : Ai ⊆ G and Ai 6⊆ L}.
Let J3 = {i ∈ J : Ai ⊆ L}: notice that J = J1 ∪ J2 ∪ J3 and that J1, J2 and J3

are pairwise disjoint. For each i ∈ J1, let xi be the element of Ai\G. Using (b),

consider a choice function (xi)i∈J2 for the family (Ai\L)i∈J2 . If J3 is nonempty,

then J3 has a unique element i0 and let xi0 = O if O ∈ Y . If O ∈ Y , let

B := Y \{xi : i ∈ J}, and if O /∈ Y , let B := Y \{xi : i ∈ J1 ∪ J2}. Then B is

a ϕY -basis such that L ⊆ B ⊆ G.

(c) ⇒ (d) follows from the definitions.
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(d) ⇒ (a): Let F be a proper subset of X which is a ϕ-flat and let x ∈ X\F .

If x = O, then for every i ∈ I, Ai\F has at least one element (else O would

belong to F ), and thus F is ϕ-independent; then G =
⋃

i∈I Ai is ϕ-spanning

and F ⊆ G: using the interpolation property, there exists a ϕ-basis B such

that F ⊆ B ⊆ G; it follows that there exists a total selector S for (Ai)i and

an element i0 ∈ I such that B = Ai0 ∪
(⋃

i 6=i0
Ai

)
\S; let xi0 ∈ Ai0\F ; then

H = B\{xi0} is a ϕ-hyperplane including F such that O /∈ H. If x 6= O, then

let i0 be the element of I such that x ∈ Ai0 . If Ai0\F contains an element y

distinct from x, then H := X\{x, y} is a ϕ-hyperplane including F and not

containing x. If Ai0\F = {x}, then for every i ∈ I\{i0}, Ai\F 6= ∅ and O /∈ F
(else x would belong to F ); using the independent set L = F\{O} and the

generating set G =
⋃

iAi, consider a ϕ-basis B such that L ⊆ B ⊆ G; then B

yields a selector S for the family (Ai\F )i∈I (and thus x ∈ S). It follows that

H :=
(⋃

i∈I Ai

)
\S is a ϕ-hyperplane including F . �

Corollary 2. AC is equivalent to the following statement: “For every nonempty

family (Ai)i∈I of pairwise disjoint nonempty sets, and for every set O such that

O /∈
⋃

i∈I Ai, the matroidal operator associated to O and the family (Ai)i∈I has

a hyperplane not containing O.”

3.4 The axiom sH implies ACfin. We denote by sHbep the axiom sH restricted

to finitary matroids satisfying the binary elimination property (i.e. such that the

set of circuits of the matroid satisfies the binary elimination property). For every

natural number n ≥ 2, we denote by sHbepn
the axiom sH restricted to finitary

matroids with the n-binary elimination property. We denote by Hbep (or Hbepn
)

the axiom H restricted to finitary matroids with the binary elimination property

(n-binary elimination property, respectively).

Remark 8. The matroidal operator associated to a family (Ai)i∈I of pairwise

finite disjoint nonempty sets satisfies the 2-binary elimination property (i.e. the

set of its circuits satisfies the 2-binary elimination property) and hence is binary.

Theorem 4. In ZF, sH⇒ sHbep ⇒ sHbep2
⇒ ACfin.

Proof: Notice that ACfin is equivalent to the statement “For every nonempty

family (Ai)i∈I of pairwise disjoint finite nonempty sets,
∏

i∈I Ai is nonempty.”:

given a family (Ai)i∈I of nonempy sets, consider the family (Ai × {i})i∈I . Given

a nonempty family (Ai)i∈I of pairwise disjoint finite nonempty sets, consider the

set X =
⋃

i∈I Ai ∪ {O} where O /∈
⋃

i∈I Ai, and consider the finitary matroidal

operator ϕ on X associated to the family (Ai)i∈I (see Theorem 2). Since ϕ

has no loops, ϕ(∅) = ∅, so ∅ is a proper flat of ϕ and thus, sHbep2
implies

a ϕ-hyperplane H not containing O. It follows from Theorem 3 that for each
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i ∈ I, Ai\H is a singleton {xi} where (xi)i∈I is a choice function for the family

(Ai)i∈I . �

Question 1. We have shown that AC⇒ sH1 ⇒ sH⇒ sHbep ⇒ sHbep2
⇒ ACfin

and of course sH ⇒ H ⇒ Hbep ⇒ Hbep2
. Does sHbep imply sH? Does H imply

ACfin? Does H imply sH?

4. Graphic matroids and the finite axiom of choice

4.1 Elimination properties.

Definition 12. A family C of subsets of a set X is said to satisfy the elimination

property if for all distinct elements C1, C2 ∈ C for every x ∈ C1 ∩C2, there exists

C3 ∈ C such that C3 ⊆ C1 ∪ C2 and x /∈ C3. The family C is said to satisfy the

strong elimination property if for all elements C1, C2 ∈ C for every x ∈ C1 ∩ C2

and every y ∈ C1\C2, there exists C3 ∈ C such that y ∈ C3 ⊆ C1∪C2 and x /∈ C3.

Notice that the binary elimination property implies the strong elimination

property, which in turn implies the elimination property.

Notation 1. For every finite set F , we denote by |F | the cardinal of F .

The following result is classical:

Proposition 7 ([16], [2]). Let C be an antichain of nonempty finite subsets of

a set X, and let ϕ be the (finitary) operator associated to C. If C satisfies the

elimination property, then:

(1) C satisfies the strong elimination property.

(2) The operator ϕ is a closure operator.

(3) The operator ϕ is matroidal.

Proof: (1) See [16, Theorem 2 page 24] or [2, Lemme 4 page 17].

(2) See [2, Théorème 8 page 18]. We sketch the proof. Let A be a subset of X

and let x ∈ ϕ(ϕ(A)). Let us show that x ∈ ϕ(A). Let C ∈ C such that x ∈ C ⊆
ϕ(A) ∪ {x}, and such that C ∩ (ϕ(A)\A) is minimal. If (C\{x}) ∩ (ϕ(A)\A) is

nonempty, let y ∈ (C\{x}) ∩ (ϕ(A)\A); since y ∈ ϕ(A), let C1 ∈ C such that

y ∈ C1 ⊆ A ∪ {y}. Using the strong elimination property, let C2 ∈ C such that

x ∈ C2 ⊆ (C ∪ C1)\{y}: then |C2 ∩ (ϕ(A)\A)| < |C ∩ (ϕ(A)\A)|, which con-

tradicts the minimality of C ∩ (ϕ(A)\A). It follows that (C\{x})∩ (ϕ(A)\A) = ∅
and thus, (C\{x}) ⊆ A so x ∈ ϕ(A).

(3) Using Lemma 1, C is the set of ϕ-circuits and ϕ satisfies the exchange

property, whence the closure operator ϕ is a matroidal operator on X. �
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4.2 The binary matroid associated to a multigraph.

4.2.1 Multigraphs. A multigraph on a set V is given by a mapping f :

X // [V ]1 ∪ [V ]2, where for each natural number n ≥ 1, [V ]n is the set of

n-element subsets of V . Elements of X such that f(x) ∈ [V ]1 are called loops of

the multigraph.

Denoting by F(V )
2 the vector space of all functions from V to F2 which are

zero outside a finite set, and denoting by (ev)v∈V the canonical basis of F(V )
2 ,

the incidence matrix of the multigraph f is the mapping f̃ : X // F(V )
2 such

that for every x ∈ X, f̃(x) is 0F(V )
2

if f(x) ∈ [V ]1, and f̃(x) = ev1 + ev2 if f(x)

is the two-element sets {v1, v2}. The matroid associated to the multigraph f is

the (binary) matroidal operator on X associated with the incidence matrix f̃ ,

see Example 2. Loops of this matroid correspond to loops of the multigraph.

A matroidal operator which is isomorphic with the (binary hence finitary) matroid

associated to a multigraph is said to be graphic.

4.2.2 Simple graphs. A simple graph on a set V is a binary relation R on V

which is irreflexive (for every x ∈ V , xRx) and symmetric (for every x, y ∈ V ,

xRy ⇒ yRx). Elements of V are called the vertices of the graph, and pairs {x, y}
of vertices such that xRy are the edges of the simple graph. A simple graph on

a set V with set E of edges is also denoted by (V,E). A (partial) subgraph of

a simple graph G on a set X with set of edges E is a simple graph (X ′, E′) such

that X ′ ⊆ X and E′ ⊆ E. Two graphs (V1, E1) and (V2, E2) are isomorphic when

there exists a bijection f : V1
// V2 which respects the edges.

Notation 2. Given some integer n ≥ 3, we denote by Cn the simple graph on

Z/nZ = {0, . . . , n − 1} with set of edges En = {{i, i +n 1} : i ∈ Z/nZ}, where

“+n” is the additive law on Z/nZ;

Given some integer n ≥ 3, a simple graph is a n-cycle if it is isomorphic with

the simple graph Cn. Given a simple graph G = (V,E), a cycle of the graph G

is a (partial) subgraph of G which is isomorphic with a n-cycle for some natural

number n ≥ 3.

4.2.3 Graphic matroids. Given a set V and a multigraph f : X // [V ]1∪[V ]2,

if E = f [X] ∩ [V ]2, then (V,E) is called the simple graph underlying the multi-

graph f . Reciprocally, every simple graph (V,E) underlies the multigraph idE :

E // E on V .

Proposition 8 ([14, Proposition 1.1.7]). Let G = (V,E) be a simple graph. Let

CG be the set of (finite) subsets F of E such that F is the set of edges of a cycle

of G. Then CG is the set of circuits of the (binary) matroidal operator MG

associated to the multigraph idE : E // E.
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Proof: Let W be the F2-vector space F(V )
2 . For every v ∈ V we denote by ev the

vth vector of the canonical basis of W . We identify each edge {a, b} of G with the

vector ea + eb of W . A subset F of E is a circuit of the matroidMG if and only

if F is nonempty,
∑

e∈F e = 0W and for every nonempty proper subset G of F ,∑
e∈G e 6= 0W ; replacing each element e = {a, b} of E by ea + eb, this means

that F 6= ∅, every vertex of the subgraph
(⋃

F, F
)

has even degree, but for every

proper subset G of F , some vertex of the subgraph
(⋃

G,G
)

has an odd degree;

this means that F is a nonempty finite union of cycles of G, and that no proper

subset of F is a cycle of G; equivalently, F is a cycle of the graph G. �

Remark 9. If f : X // [V ]1 ∪ [V ]2 is a multigraph on a set V , if Mf is the

matroid associated to the multigraph f , loops of Mf are the singletons {x} such

that x ∈ X and f(x) is a singleton; circuits of cardinal two of Mf are the pairs

{x, y} of distinct elements of X such that f(x) = f(y). Given some natural

number n ≥ 3, then the n-circuits of Mf are the n-element subsets {x1, . . . , xn}
of X such that {f(x1), . . . , f(xn)} is the set of edges of an n-cycle of the underlying

simple graph of f .

4.3 An equivalent of ACfin in terms of graphic matroids.

Theorem 5. The following statements are equivalent:

(1) ACfin.

(2) For every family (Ai)i∈I of pairwise disjoint nonempty finite sets with at

least two elements, the (binary hence finitary) matroid associated to this

family is graphic.

Proof: (1)⇒ (2) Let (Ai)i∈I be an infinite family of pairwise disjoint nonempty

finite sets, such that for every i ∈ I, ni := |Ai| ≥ 2. Let M be the matroid

associated to the family (Ai)i∈I : the underlying set of M is M :=
⋃

i∈I Ai ∪{O}
where O /∈

⋃
i∈I Ai. We consider a family (Vi)i∈I of pairwise disjoint linearly

ordered finite sets such that for each i ∈ I, |Vi| = ni − 1. We also consider

two distinct elements a and b not belonging to
⋃

i∈I Vi, and we define the set

V := {a, b}∪
⋃

i∈I Vi. Since each Vi is linearly ordered for each i ∈ I, we consider

a graph Gi on Vi ∪ {a, b} which is an (ni + 1)-cycle and such that {a, b} is an

edge of this graph: we denote by Ei the set of the ni edges of Gi which are

not equal to the edge {a, b} of Gi. We consider the simple graph G on V which

admits E :=
⋃

i∈I Ei ∪ {{a, b}} as set of edges, see Figure 1. Notice that every

finite subgraph of G is planar. We denote by G the matroid on E associated to

the graph G. Using ACfin, we consider a family (fi)i∈I such that for every i ∈ I,

fi : Ei
// Ai is a bijection. It follows that f :=

⋃
i∈I fi is a bijection from

⋃
i∈I Ei

to
⋃

i∈I Ai and we extend it into a bijection from E to M . Then the bijection f

respects circuits of MG and M and thus the matroid M is graphic.
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(2)⇒ (1) Let (Ai)i∈I be a family of pairwise disjoint nonempty finite sets with

at least two elements. LetM be the finitary matroid on {O}∪
⋃

i∈I Ai associated

to this family. Let G = (V,E) be a graph such that M is the graphic matroid

associated to G. Let a, b be the two extremities of the edge O of G. Then, for

every i ∈ I, Ai ∪ {O} is the set of edges of a cycle of the graph G: let ei be

the unique edge of Ai which is incident to the vertex a. Then (ei)i∈I is a choice

function for the family (Ai)i∈I . �

Figure 1. The graph G associated to the matroid M.

Consider the following well known consequences of AC imply ACfin:

MG1: “For every binary matroidM, if every finite minor of M is graphic then

M is graphic”.

MG2: “For every binary matroidM, if every finite submatroid of M is graphic

and planar then M is graphic”.

MG3: “For every binary matroidM, if every finite minor of M is graphic and

planar then M is graphic”.

Notice that both statements MG1 and MG2 imply MG3. Moreover, every

finite minor of the binary matroid used in the proof of Theorem 5 is graphic and

planar, and thus, MG3 implies ACfin.

Question 2. Does ACfin or sH imply one of the statements MG1, MG2 or MG3?

Question 3. Is the following statement provable in ZF: “Every (infinite) graphic

matroid is hyperplane-accessible.”?
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Figure 2. Summary diagram of the axioms.

In the diagram in Figure 2, we add the statement DQ which implies the

statement ACZ: “Every family of posets isomorphic with the linear order Z has

a nonempty product.”, see [10, Theorem 4]. We also add the statement D0 (or Dp)

which is D restricted to vector spaces over a commutative field K of characteris-

tic 0 (p, respectively).

Question 4. The statements BPI (“Every non trivial Boolean algebra has a max-

imal ideal”), OEP (“Every partial order on a set X can be extended into a linear

order on X”) and O (“On every set X there exists a linear order”), see forms

14, 49 and 30 of [7], are well known consequences of AC which are stronger than

ACfin. Are there implications between one of them and H or sH or sHbep or

sHbepn
for some integer n ≥ 2?

Acknowledgement. I thank the referee for his/her careful reading of the man-

uscript, which made it possible to clarify and correct a large number of points.



Hyperplanes in matroids and the axiom of choice 441

References

[1] Cohn P. M., Universal Algebra, Mathematics and Its Applications, 6, D. Reidel Publishing

Co., Dordrecht, 1981.
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