Article
Keywords:
radical class; semi-simple class; Mal'tsev--Neumann product
Summary:
Malt'tsev--Neumann products of semi-simple classes of associative rings are studied and some conditions which ensure that such a product is again a semi-simple class are obtained. It is shown that both products, $\mathcal{S}_{1}\circ\mathcal{S}_{2}$ and $\mathcal{S}_{2}\circ\mathcal{S}_{1}$ of semi-simple classes $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$ are semi-simple classes if and only if they are equal.
References:
[3] Gardner B. J., Wiegandt R.:
Radical Theory of Rings. Monographs and Textbooks in Pure and Applied Mathematics, 261, Marcel Dekker, New York, 2004.
MR 2015465
[4] Mal'tsev A. I.:
Ob umnozhenii klassov algebraicheskikh sistem. Sibirskii Mat. Zh. 8 (1967), 346–365 (Russian).
MR 0213276
[6] Penza T., Romanowska A. B.:
Mal'tsev products of varieties, I. Algebra Universalis 82 (2021), no. 2, Paper No. 33, 19 pages.
MR 4251619