Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
2-group; metabelian
Summary:
We show that any finite 2-group, whose abelianization has either 4-rank at most 2 or 8-rank 0 and whose commutator subgroup is generated by two elements, is metabelian. We also prove that the minimal order of any 2-group with nonabelian commutator subgroup of 2-rank 2 is $2^{12}$.
References:
[1] Benjamin, E., Snyder, C.: Some real quadratic number fields whose Hilbert 2-class fields have class number congruent to 2 modulo 4. Acta Arith. 177 (2017), 375-392. DOI 10.4064/aa8485-9-2016 | MR 3630722 | Zbl 1401.11143
[2] Blackburn, N.: On prime-power groups in which the derived group has two generators. Proc. Camb. Philos. Soc. 53 (1957), 19-27. DOI 10.1017/S0305004100031959 | MR 0081904 | Zbl 0077.03202
[3] Blackburn, N.: On prime-power groups with two generators. Proc. Camb. Philos. Soc. 54 (1958), 327-337. DOI 10.1017/S0305004100033521 | MR 0102557 | Zbl 0083.01902
[4] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin (1967), German. DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
Partner of
EuDML logo