Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Green algebra; automorphism group; weak Hopf algebra
Summary:
Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler's 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6.
References:
[1] Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to $U_q[sl_n]$. J. Math. Phys. 44 (2003), 5250-5267. DOI 10.1063/1.1616999 | MR 2014859 | Zbl 1063.16041
[2] Bardakov, V. G., Neshchadim, M. V., Sosnovsky, Y. V.: Groups of triangular automorphisms of a free associative algebra and a polynomial algebra. J. Algebra 362 (2012), 201-220. DOI 10.1016/j.jalgebra.2011.03.038 | MR 2921639 | Zbl 1269.16033
[3] Beattie, M., Dăscălescu, S., Grünenfelder, L.: Constructing pointed Hopf algebras by Ore extensions. J. Algebra 225 (2000), 743-770. DOI 10.1006/jabr.1999.8148 | MR 1741560 | Zbl 0948.16026
[4] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. DOI 10.1090/S0002-9939-2013-11823-X | MR 3148512 | Zbl 1309.16021
[5] Dăscălescu, S.: On the dimension of the space of integrals for finite dimensional bialgebras. Stud. Sci. Math. Hung. 45 (2008), 411-417. DOI 10.1556/sscmath.2008.1067 | MR 2661993 | Zbl 1188.16026
[6] Dicks, W.: Automorphisms of the polynomial ring in two variables. Publ., Secc. Mat., Univ. Autòn. Barc. 27 (1983), 155-162. MR 0763864 | Zbl 0593.13005
[7] Drensky, V., Yu, J.-T.: Coordinates and automorphisms of polynomial and free associative algebra of rank three. Front. Math. China 2 (2007), 13-46. DOI 10.1007/s11464-007-0002-9 | MR 2289907 | Zbl 1206.16015
[8] Green, J. A.: The modular representation algebra of a finite group. Ill. J. Math. 6 (1962), 607-619. DOI 10.1215/ijm/1255632708 | MR 0141709 | Zbl 0131.26401
[9] Jia, T., Zhao, R., Li, L.: Automorphism group of Green ring of Sweedler Hopf algebra. Front. Math. China 11 (2016), 921-932. DOI 10.1007/s11464-016-0565-4 | MR 3531037 | Zbl 1372.16038
[10] Li, F.: Weak Hopf algebras and new solutions of the quantum Yang-Baxter equation. J. Algebra 208 (1998), 72-100. DOI 10.1006/jabr.1998.7491 | MR 1643979 | Zbl 0916.16020
[11] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. DOI 10.1090/conm/585 | MR 3077243 | Zbl 1309.19001
[12] McKay, J. H., Wang, S. S.-S.: An elementary proof of the automorphism theorem for the polynomial ring in two variables. J. Pure Appl. Algebra 52 (1988), 91-102. DOI 10.1016/0022-4049(88)90137-5 | MR 0949340 | Zbl 0656.13002
[13] Perepechko, A.: On solvability of the automorphism group of a finite-dimensional algebra. J. Algebra 403 (2014), 455-458. DOI 10.1016/j.jalgebra.2014.01.018 | MR 3166084 | Zbl 1301.13024
[14] Shestakov, I. P., Umirbaev, U. U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17 (2004), 197-227. DOI 10.1090/S0894-0347-03-00440-5 | MR 2015334 | Zbl 1056.14085
[15] Su, D., Yang, S.: Automorphism group of representation ring of the weak Hopf algebra $\widetilde{H}_8$. Czech. Math. J. 68 (2018), 1131-1148. DOI 10.21136/CMJ.2018.0131-17 | MR 3881903 | Zbl 07031704
[16] Su, D., Yang, S.: Green rings of weak Hopf algebras based on generalized Taft algebras. Period. Math. Hung. 76 (2018), 229-242. DOI 10.1007/s10998-017-0221-0 | MR 3805598 | Zbl 1399.16085
[17] Taft, E. J.: The order of the antipode of finite-dimensional Hopf algebra. Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. DOI 10.1073/pnas.68.11.2631 | MR 0286868 | Zbl 0222.16012
[18] Zhao, R., Yuan, C., Li, L.: The automorphism group of Green algebra of 9-dimensional Taft Hopf algebra. Algebra Colloq. 27 (2020), 767-798. DOI 10.1142/S1005386720000656 | MR 4170888 | Zbl 1465.16043
Partner of
EuDML logo