[3] Cao, X., Lankeit, J.:
Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 107, 39 pages.
DOI 10.1007/s00526-016-1027-2 |
MR 3531759 |
Zbl 1366.35075
[9] Horstmann, D.:
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165.
MR 2013508 |
Zbl 1071.35001
[13] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.:
Chemotactic signaling, microglia, and Alzheimer's disease senile plagues: Is there a connection?. Bull. Math. Biol. 65 (2003), 693-730.
DOI 10.1016/S0092-8240(03)00030-2 |
Zbl 1334.92077
[14] Nagai, T., Senba, T., Yoshida, K.:
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40 (1997), 411-433.
MR 1610709 |
Zbl 0901.35104
[15] Osaki, K., Yagi, A.:
Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469.
MR 1893940 |
Zbl 1145.37337