Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process
Summary:
We consider the Keller-Segel-Navier-Stokes system $$ \begin{cases} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ),& x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, &x\in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, &x\in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, &x\in \Omega ,\ t>0, \end{cases} $$ which is considered in bounded domain $\Omega \subset \mathbb {R}^N$ $(N \in \{2,3\})$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline \Omega )$ with $\delta \in (0,1)$. We show that if the initial data $\|n_0\|_{L^{{N}/{2}}(\Omega )}$, $\|\nabla v_0\|_{L^N(\Omega )}$, $\|\nabla w_0\|_{L^N(\Omega )}$ and $\|{\bf u}_0\|_{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar n}_0,{\bar n}_0,{\bar n}_0,0)$ exponentially with ${\bar n}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$.
References:
[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. DOI 10.1142/S021820251550044X | MR 3351175 | Zbl 1326.35397
[2] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35 (2015), 1891-1904. DOI 10.3934/dcds.2015.35.1891 | MR 3294230 | Zbl 06384058
[3] Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 107, 39 pages. DOI 10.1007/s00526-016-1027-2 | MR 3531759 | Zbl 1366.35075
[4] Corrias, L., Perthame, B.: Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces. Math. Comput. Modelling 47 (2008), 755-764. DOI 10.1016/j.mcm.2007.06.005 | MR 2404241 | Zbl 1134.92006
[5] Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal., Real World Appl. 21 (2015), 110-126. DOI 10.1016/j.nonrwa.2014.07.001 | MR 3261583 | Zbl 1302.35102
[6] Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equations 263 (2017), 88-148. DOI 10.1016/j.jde.2017.02.031 | MR 3631302 | Zbl 1364.35120
[7] Fujie, K., Senba, T.: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension. J. Differ. Equations 266 (2019), 942-976. DOI 10.1016/j.jde.2018.07.068 | MR 3906204 | Zbl 1406.35149
[8] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217. DOI 10.1007/s00285-008-0201-3 | MR 2448428 | Zbl 1161.92003
[9] Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. MR 2013508 | Zbl 1071.35001
[10] Jin, H.-Y.: Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl. 422 (2015), 1463-1478. DOI 10.1016/j.jmaa.2014.09.049 | MR 3269523 | Zbl 1307.35139
[11] Li, X., Xiao, Y.: Global existence and boundedness in a 2D Keller-Segel-Stokes system. Nonlinear Anal., Real World Appl. 37 (2017), 14-30. DOI 10.1016/j.nonrwa.2017.02.005 | MR 3648369 | Zbl 1394.35241
[12] Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equations 262 (2017), 5271-5305. DOI 10.1016/j.jde.2017.01.024 | MR 3612542 | Zbl 1377.35148
[13] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimer's disease senile plagues: Is there a connection?. Bull. Math. Biol. 65 (2003), 693-730. DOI 10.1016/S0092-8240(03)00030-2 | Zbl 1334.92077
[14] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40 (1997), 411-433. MR 1610709 | Zbl 0901.35104
[15] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. MR 1893940 | Zbl 1145.37337
[16] Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23 (2013), 1-36. DOI 10.1142/S0218202512500443 | MR 2997466 | Zbl 1403.35136
[17] Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66 (2015), 2555-2573. DOI 10.1007/s00033-015-0541-y | MR 3412312 | Zbl 1328.35084
[18] Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system. Z. Angew. Math. Phys. 67 (2016), Article ID 138, 23 pages. DOI 10.1007/s00033-016-0732-1 | MR 3562386 | Zbl 1356.35054
[19] Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27 (2017), 2745-2780. DOI 10.1142/S0218202517500579 | MR 3723735 | Zbl 1378.92010
[20] Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. DOI 10.2422/2036-2145.201603_004 | MR 3801284 | Zbl 1395.92024
[21] Wang, Y., Yang, L.: Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism. J. Differ. Equations 287 (2021), 460-490. DOI 10.1016/j.jde.2021.04.001 | MR 4242960 | Zbl 1464.35052
[22] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248 (2010), 2889-2905. DOI 10.1016/j.jde.2010.02.008 | MR 2644137 | Zbl 1190.92004
[23] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equations 37 (2012), 319-351. DOI 10.1080/03605302.2011.591865 | MR 2876834 | Zbl 1236.35192
[24] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Funct. Anal. 276 (2019), 1339-1401. DOI 10.1016/j.jfa.2018.12.009 | MR 3912779 | Zbl 1408.35132
[25] Winkler, M.: Small-mass solutions in the two-dimensional Keller-Segel system coupled to Navier-Stokes equations. SIAM J. Math. Anal. 52 (2020), 2041-2080. DOI 10.1137/19M1264199 | MR 4091876 | Zbl 1441.35079
[26] Winkler, M.: Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction. Commun. Math. Phys. 389 (2022), 439-489. DOI 10.1007/s00220-021-04272-y | MR 4365145 | Zbl 07463712
[27] Yu, H., Wang, W., Zheng, S.: Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity. J. Math. Anal. Appl. 461 (2018), 1748-1770. DOI 10.1016/j.jmaa.2017.12.048 | MR 3765513 | Zbl 1390.35381
[28] Yu, P.: Blow-up prevention by saturated chemotactic sensitivity in a 2D Keller-Segel-Stokes system. Acta Appl. Math. 169 (2020), 475-497. DOI 10.1007/s10440-019-00307-8 | MR 4146909 | Zbl 1470.35185
[29] Zhang, W., Niu, P., Liu, S.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal., Real World Appl. 50 (2019), 484-497. DOI 10.1016/j.nonrwa.2019.05.002 | MR 3959244 | Zbl 1435.35068
Partner of
EuDML logo