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Abstract. We consider the Keller-Segel-Navier-Stokes system

ng+u-Vn=An—V-(nVv), €N, t>0,
ve+u-Vo=Av—v+w, re, t>0,
wg+u-Vw=Aw—w+n, z €N t>0,

u+(u-Viu=Au+VP+nVe, V-u=0, z€Q,t>0,

which is considered in bounded domain Q@ ¢ R (N € {2,3}) with smooth boundary, where
¢ € C19(Q) with 6 € (0,1). We show that if the initial data Inoll vy IVvolly )
[Vwoll L~ (q)y and |luollp~(q) is small enough, an associated initial-boundary value prob-
lem possesses a global classical solution which decays to the constant state (7ig, g, 720, 0)
exponentially with 7o := (1/|Q) [, no(z)dz.
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1. INTRODUCTION

Chemotaxis is a phenomenon that occurs in both prokaryotic and eukaryotic types
of moving cells, including bacteria, protozoa, white blood cells, and tumor cells,
where the direction of movement is influenced by the concentration of chemical stim-
ulis. Chemotactic motion is usually directed in the direction of a higher stimulus con-
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centration, so the stimulus is called a chemoattractant. In order to describe the move-
ment of cells, especially an aggregation, in 1970s, Keller and Segel proposed the fol-
lowing reaction-diffusion system in which the chemical substance is produced by cells:

(1.1)

ny = An — V- (nVv),
{ vy =Av —v+n,

where n = n(x,t), v = v(z,t) denote the density of bacteria and concentration of
chemical substance, respectively. During the past four decades, system (1.1) and
its variants have been paid extensive attentions. For instance, it is a known fact
that the homogeneous Neumann problem of (1.1) possesses global and bounded
solutions when N = 1, see [15]. If N > 2, the remarkable property of system (1.1)
is the existence of blow-up solutions in finite or infinite time. Especially, in two-
dimensional case, a critical mass phenomenon has been identified and studied in [14].
Namely, beginning with initial mass above it, the solution blows up in finite time.
Otherwise, there is a global-in-time solution to problem (1.1). In the case of N > 3,
Cao in [2] has proved that under the smallness assumptions of |[ngl| ~/2(q) and
[ Vvoll L~ (02, global classical solutions exist with the following decay estimate hold-
ing: |[n(-,t) — Aol () + Jv(-,t) — Roll () < Ce™™, where fig = [~ [, no(z).
This kind of model has been widely studied; we can refer to the survey (see [8], [9])
for a broader overview. Besides, the large time behavior of solutions to (1.1) with
small initial data can be found in [4], [22].

In nature, migration of cells can be profoundly influenced by environmental
changes and vice versa. More commonly, cells tend to live in a viscous fluid, where
cells and chemical matrices are transported along with, at the same time, the motion
of fluid being influenced by the gravity generated by cell aggregation. To decribe
these processes, the following Keller-Segel-(Navier-)Stokes system was proposed and
has been studied by many authors:

ng+u-Vn=An—V-(nVv), zeQ, t>0,

v +u-Vo=Av—v+n, e, t>0,
(1.2) u +k(u-Viu=Au+VP+nVe, V-u=0, x €N, t>0,

Vn-v=Vv-r=0, u=0, r eI, t>0,

n(z,0) = ng(z), v(z,0) = vo(x), w(z,0) = w(z),

u(z,0) = ug(x), x €,

where v stands for the outward normal vector on 02, ¢ is a potential function. We
denote the fluid velocity by u and the associated pressure by P. The symbol x stands
for the coefficient which relats to the strength of nonlinear fluid convection.
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The chemotaxis-(Navier)-Stokes model has attracted many researcher’s attentions
since it was proposed. Different from (1.1), the appearance of fluid brings a lot
of substantial difficulties to study the solution of this coupled system. When
k = 0, which means the fluid flows slowly, system (1.2) is an incompressible
chemotaxis-Stokes system. In 2017, authors of [11] obtained global bounded classi-
cal solutions if |[ngl|z1(q) is small enough in the 2D case. With additional logistic
source, (1.2) possesses the global weak solution in two-dimensional setting in [5].
The effort to this 3-D problem is due to the work of Tao and Winkler (see [17]),
in which they constructed global bounded classical solution under the explicit con-
dition g > 23, where p is the given parameter from logistic source. In the full
chemotaxis-Navier-Stokes system (x # 0) with additional logistic source concerned,
the problem in [18] possesses a global classical solution which is bounded and
satisfies |[n(:,t)[| L) + [0(-,0)||Lo() + [[u(-, )| (@) — 0 as t — oo while the
prescribed function [i° [, l9(,t)[* dzdt < oo in the 2D case. When N = 3, the
problem in [24] possesses at least one globally defined solution in an appropriate
generalized sense, and this solution is uniformly bounded with respect to the norm
in L1(Q) x L5(Q) x L2(;R3). Very recently, Winkler improved this result and
obtained the eventual smooth solutions in [26]. The equality (1.2); can be replaced
by a matrix-valued sensitivity to get ny + u-Vn = An — V - (nS(z,n,v) - Vv),
where S € C?(Q2 x [0,00)%)V*¥ reflects rotational chemotactic motion. In par-
ticular, under the assumption |S(z,n,v)] < Cs(1 + n)~® with some Cs > 0
and a > 0, the author of [19] proved the existence of globally bounded clas-
sical solution while o« > 0 in the 2D case. Then Liu and Wang in [12] ob-
tained the global weak solution if o > % when N = 3. Recently, Wang et
al. in [20] further improved this result to the case o > % Moreover, by the
properties of Neumann heat semigroup and Stokes semigroup, Yu et al. in [27]
constructed the global classical solutions of system (1.2) which decay to the con-
stant steady state (7, 70,0) exponentially in L>°-norm with ng = (1/|9) [, no,
whenever [|nol|z~/2(q), [[Vvollzy ) and |lugl/z~(q) are small enough. However,
without any sensitivity and logistic source, Winkler in [25] constructed the glob-
ally defined generalized solution of (1.2) under a smallness assumption merely
involving the initial data ng; furthermore, the following long time behavior holds:
I1+1) = Rollc + 100 0) = Toll ey + -y — 0 as ¢ = oo, For more
works on corresponding chemotaxis models and their variants, we refer to the survey
(see [1]) and the references therein.

Indirect process. The models mentioned above describe a direct effect on the
chemical signal. However, the natural environment is more complex. In order to

describe how the combination of chemicals might interact to produce aggregation of
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cells, the authors of [16] proposed the following system based on [13]:

ne =An—V - (nxVv) + V - (§nVw), e, t>0,
vy = Av — 10 + Paw, zeQ, t>0,

(1.3) wy = Aw — yw + In, xe, t>0,
Vn-v=Vv-v=Vw-v =0, r eI, t>0,
n(z,0) = no(x), v(z,0) =vo(z), w(z,0) =we(z), z €N

The positive parameters xy and £ are called the chemosensitivity coefficients,
and (1,02,7,0 > 0 are chemical production and depredation rates. The sym-
bol w stands for a different chemical substance from v. In contrast to system (1.1),
model (1.3) contained two chemical substances and the signal production here occurs
in an indirect process. In [16], it is shown that when N € {2, 3}, solutions of (1.3)
exist globally in time with &y > x/f1, 82 = ¢ and converge to (7o, 70S1/ B2, Mo/ B2)
exponentially as ¢ — co. Further study in [10] shows that as long as £y > x /51, the
weak solution to (1.3) exists globally in the 3D case.

In particular, Fujie and Senba studied the following chemotaxis system with Keller-
Segel type signal production in [6], [7]:

ne=An—-V-(nVv), z€Q, t>0,
(1.4) vy =Av—v+w, e, t>0,
wy = Aw —w + n, zeQ, t>0.

They considered the system coupled with homogeneous Neumann boundary condi-
tions or no-flux-Dirichlet-conditions in a smooth bounded domain Q2 C RY (N < 4)
and obtained the boundedness of classical solution of (1.4) in the 3D case for all
reasonably regular initial data. In the four-dimensional setting, the critical mass
condition is necessary to derive the boundedness of solution by use of Adam-type in-
equality and Lyapunov function. As for problem (1.4) with additional logistic term,
authors of [29] obtained the decay properties, namely (n,v,w) — (1,1,1) in L (Q)
as t — oo under some given conditions. In 2020, Yu considered (1.4) in fluid envi-
ronment by coupling with Stokes equation

ng+u-Vn=An—V-.(nS(z,n,v,w)Vv), zeQ, t>0,

v +u-Vou=Av—v+w, e, t>0,

wy +u-Vw=Aw—w+n, e, t>0,
(1.5) u =Au+VP+nVe, V-u=0, zeQ, t>0,

Vn-v=Vv-v=Vw-v=0, u=0, x e d, t>0,

n(x,0) = ng(z), v(z,0) =vo(x), w(z,0) =w(z),

u(z,0) = ug(x) x € Q,
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where S(z,n,v,w) is a given chemotactic sensitivity function and satisfies
|S(z,n,v,w)] < Cg(1+mn)".

The author obtained the boundedness of the classical solution of system (1.5) in two-
dimensional setting in [28] while o > 0. More recently, Wang-Yang in [21] improved
the result of [28], they proved that when N = 2, only if o > 0, system (1.5) possesses
global bounded classical solution. When N = 3, the bounded solution of (1.5) can
be obtained under the condition that o > %.

Main result. Inspired by the above works, we pay our attention to the global
existence and long-time behavior of the classical solution to the Keller-Segel-Navier-
Stokes system

ng+u-Vn=An—V-(nVv), zeQ, t>0,

v +u-Vo=Av—v+w, e, t>0,

wy +u-Vw=Aw—w+n, e, t>0,
(1.6) w+ (u-V)u=Au+VP+nVe, V-u=0, r €N, t>0,

Vn-v=Vv-v=Vw -v=0, u=0, r eI, t>0,

n(z,0) = ng(z), v(z,0) =vo(x), w(z,0) = w(z),

u(z,0) = ug(x) x €,

in a bounded domain  C RY with N € {2,3}. Before our proof, some hypotheses
will be essential. Suppose that ¢ € C'*9(Q) with 6 € (0,1) and the initial data no,
Vg, Wo, Ug satisfy

no € C°(Q), ng >0 and ng Z 0 on Q,
(1.7) vo, wo € WH(Q), vo,wo > 0,

ug € D(AP) for some 3 € (g, 1),

where A denotes the realization of the Stokes operator in L2(Q;RY), defined
on its domain D(A) := W22(Q;RY) N W, (4 RY) N L2(Q) with L2(Q) :=
{p € L2(Q;RYN): V-9 =0}. Denote the first nonzero eigenvalue of —A in
under Neumann boundary condition by A1, and by A| the first eigenvalue of Stokes
operator with homogeneous Dirichlet boundary data. Under these assumptions,
we construct decay estimates of the classical solutions of (1.6). Our main result is
presented as the following theorem:
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Theorem 1.1. Suppose that N € {2,3}, B € (iN,1), ¢ € C'*(Q) with
§ € (0,1). Then for any ag € (0,A1), a2 € (0, min{a, \;}) there exists € > 0 such
that if initial data (1.7) satisfy

(1.8) Imoll Lxr2(0) + [[VvollLa ) + [[Vwoll Ly @) + [uollzv ) < e,

system (1.6) possesses a global classical solution (n,v,w,u, P), which enjoys the

regularities
n € C%Q x [0,00)) N C>1 (2 x (0,00)),
ve pDN C0([0, 00); WHP(2)) N C1(Q x (0, 00)),
(1.9) w e DN C0([0, 00); WH1(2)) N C*1 (2 x (0, 00)),
u € C°([0,00); D(A?)) N C*1 (82 x [0, 00); RY),
P e oY x (0,00)).

Moreover, for some C' > 0 and all t > 0, this solution has the property that
(1.10)  |In(-,t) — noll poe (o) < Ce™ Y, [v(-,t) = fig|lwroe () < Ce™ ™,
[w(-t) = Tiollwro @) < Ce™ ", [u(,t)|| e (9) < Ce™ ",

where g := (1/|9]) [, no(z) d.

2. ESTIMATES UNDER THE SMALLNESS ASSUMPTION FOR |[1¢|| a0 (0)
WHERE $N < qo < N

In this section, we obtain some results based on the following smallness hypothesis:
(2.1) 10l Lao () + [[Vvoll L () + [Vwoll vy + oLy @) < <o

for any qo > %N and some €y > 0. Our main purpose is to prove that the maximal
existence time Ty,x = oo firstly, and then to deduce the decay estimates listed
in (1.10) under hypotheses (2.1). Now, we state the following local existence of
classical solutions to (1.6).

Lemma 2.1. Suppose that N € {2,3}, 8 € (%N, 1), ¢ € C*°(Q) with 6 € (0,1)
and the initial data satisfy (1.7). Then:

(1) There exist 7 = 7(8, [|noll (). [[vollw1.e (@), |l wollw.= (). | A w0l L2()), 1 =
n(7) > 0 and a classical solution (n,v,w,u) of (1.6) in (0,7) such that for all
te0,7],

(s )| e @y + (- B)llwroe @) + lw( Ollwres ) + M a2 @) < n-
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(2) The solution (n,v,w,u) of (1.6) can be extended to the maximal existence time
Tmax > 0 with keeping n, v, w positive in Q x (0, Tinax), and is unique, up to
addition of constants to P. Moreover, if Ty, < 00, then

(s 8| oo () + oG ) llwre @) + 1w 8) w0y + [APU( 8)]| L2) = 00
ast — Thax-

Proof. This result can be derived by a very similar procedure as that of
Lemma 2.1 in [23], which is based on the contraction mapping principle and stan-
dard regularity theories for the heat equation and the Stokes system. We omit the
details here. O

Lemma 2.2. If the initial data satisfy (1.7), then the classical solution of (1.6)
satisfies

(2.2) / n(,t) do = / no@)dz Vit € [0, Tona),
Q Q
(2.3) /v(~,t) dz < max{/vo(x) dx,/ wo () dx,/ no(x) dx} vVt € [0, Tmax)s
Q Q Q Q
and
(2.4) / w(-t)dr < max{ / wo () da:,/ no(x) dx} vVt € [0, Tmax)-
Q Q Q
Proof. Integrating the first equation of (1.6) over 2, we have
/ n(-,t)de = / no(x)dx YVt € [0, Thax) since V-u=0.
Q Q
Similarly, integration on the third equation of (1.6) suggests that
g/ w(',t)dx—f—/ w(~,t)dx:/n(~,t)dx:/n0(x)dx vVt € [0, Tmax)s
dt Jo Q Q Q

which yields (2.4) by taking the time integral. By the same process, we can ob-
tain (2.3) and complete the proof. O

We give the following lemma and it will be frequently used in the rest of the
chapters.

Lemma 2.3. Form,n < 1,v,d > 0 with v # 0 there exists C = C(m,n,d,v) >0
such that for all t > 0,

t
/ (1 + (t _ S)fm)efv(tfs)(l + an)efés ds < C(l _‘_tmin{O,lfmfn})ef min{'y,é}t.

0

Proof. The proof can be found in [22], Lemma 1.2. O
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Fix ay € (0, A1) and po € (N, Ngo/(N — qo)) with go € (N/2,N). Since 1 — 3 >0
and 1 — % — N/(2po) = —%, based on Lemma 2.3, there exist l1, 2,3 > 0 such that
for all t > 0,

t
(2.5)/ e MFDE=8) (] 4 g=1/2)em s g5 L [ye 0,
0

t
(2.6) / (I+(t— 3)71/2*1\[/(2170))e*()\ﬂrl)(tfs)(1 + 871+N/(2p0))efa15 ds
0
< lg(l +t_1/2)e_alt,

t
(2.7) / (14 (t — s)"H/2)e=MutD=9) (1 4 g~ N/Ca0))em15 g L [5(1 4t~/ 2)e 0t
0

Let ap € (0, min{a1, A} }), we can choose p € (a2, \]) satisfying ap < min{on, p}.
Due to 1 — % — 14+ N/(2pg) < % and 1 — %N(qo_1 —pal) > 0, there exist Iy, I5 > 0
such that for all ¢ > 0,

t
/ ef/,l,(tfs)(l +87N(q0—17p51)/2)efa15 ds < l4(1_’_1571/24,»]\/'/(21)0))6*042157
0

¢
/ (t _ S)—l/Qe—u(t—s)(l + S—1+N/(2p0))e—<y2s ds < 15(1 +f,_1/2+N/(2p0))e_a2t.
0
Since 1 — § — %N(qal —py ') >0and 2+ N/(2py) < 1 for some lg, I7 > 0 we have

t
/ (£ — 8)" M2 10=8) (1 4 ¢~ N =25 )/2)gmens gg < 1o(1 4 ¢~ 1/2)em 020,
0

t
/ (t _ s)*l/Q*N/(QPO)e*H(t*S)(l 4 3*1+N/(2p0))e*0428 ds < 17(1 + t*1/2)e*azt.
0

We can deduce that 2 + 2N (p, ' —6~1) < 1 since 6 € [py, o0]. Once more, we make
use of Lemma 2.3, there exist Ig,lg > 0 such that for all ¢ > 0

t
/ (14 (t — 8)" /2N =07)/2)g =X (t=5)(] 4 g=1/2=Nlay ' =pg )/2)g=on5 g
0
Clg(1+ N =07)/2)g—ont
t
/ (1 + (t o s)fl/QfN(pal79—1)/2)87)\1@75)(1 + 871/2)efa18 ds
0

< 19(1 + t_N((Ioil—Gfl)/Q)e—O(lt.

Now we recall the LP — L? estimates for Neumann heat semigroup in bounded do-

mains.
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Lemma 2.4. Let (etA)t>0 be the Neumann heat semigroup in 2 with \;y > 0
denoting the first nonzero eigenvalue of —A under Neumann boundary condition.
Then there exist K1, Ko, K3, K4 > 0 depending only on 2 which have the following
properties:

> If1 <qg<p< oo, then
—1_ -1
e 2@l o) < Kr(L+t N =P )2 e o) 10q), >0

for ¢ € L9(Q) satistying [, ¢ = 0.
> If1 < qg<p< oo, then

1

19620l ey < Kol 4+ /2N 27020 M0 g ¢ 0

for ¢ € L1(Q).
> If2 < g<p< oo, then

1 -1
Vel oy < Ka(1+t N0 77 /) e V0 10q), >0

for p € WHe(Q).
> Ifl<g<p<oorl<gqg<p=oo, then

€AV - @l Loy < Ka(1+ ¢~/ N@ =270/2) 0Nt 0] o 8> 0
for ¢ € (L9(Q))N.

Proof. The proof can be found in [22], Lemma 1.3 and [2], Lemma 2.1. O

The following two lemmas could be found in [3], Lemmas 2.2 and 2.3; here we
omit the detailed proofs.

Lemma 2.5. Forp € (1,00), the Helmholtz projection P defines a bounded linear
operator P: LP(, RN) — LE(Q), i.e., there exists a constant ki (p) > 0 such that

[PwlLe) < k1 (p)llwll e

for w € LP(Q).

Lemma 2.6. Let (etA)t>0 be the analytic semigroup generated by Stokes opera-
tor A on LP(Q). For any fixed p € (0,\;) with | := inf Reo(A) > 0 denoting the
first eigenvalue of A under the homogeneous Dirichlet boundary data, the following
estimates hold:
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> If1 < p < ooand~y >0, then there exits ka(p,7y) > 0 such that
A e A wl Loy < ka(p, )t e w]|Log), >0
for w € L2(€2).
> If 1 < g < p < oo, then there exits ks(p,q) > 0 such that

1 -1
e A wl| Loy < ks(q,p)t N 7P )2 jw|| o), >0

for w € LL(2).
> If1 < g < p < oo, then there exits k4(p,q) > 0 such that

_ _1/9_ —1_ -1 0
”ve tAwHLP(Q) <k4(q,p)t 1/2—N(q P )/28 ltHw”Lq(Q)a t>0

for w € LL(9).
>Ifvy>0and 1 < g < p < oo with 2y — N/q > 1 — N/p, then there exits
ks(v,p,q) > 0 such that

lwllwrr ) < ks(v,¢,P) AW Laay, >0
for w € Dy(AY).
Next, we define some constants which will be used in the following lemmas. The
constants [; > 0 (¢ = 1,...,9) are introduced after Lemma 2.3. The inequalities

K;>0(j=1,...,4) come from Lemma 2.4, k. (r=1,...,5) > 0 are constants in
Lemmas 2.5 and 2.6. With these constants, we have the following lemma.

Lemma 2.7. For any py € (N,Nqo/(N — qo)) with qo € (3N, N), there exist
positive constants C1, Co, C3, C4 such that

2K3 4+ 2K3C51,

2.8) Ci > ,
(2.8) C1>—— 6K5C3lae0
2K3 + 2K2(1 + 2K1)l3
2. >
( 9) 02 1-— 6K203l250
o 2k3(po, N) 4 2k3(po, po)k1(po) (1 + 2K1)||V@|| o Q>l4
3z 1 — 6k3(Y, po)k1(T)Culseo
5 2N N) + 2k (N, Nkt (N) (1 +2K1)IIV¢IIL00(Q>16
4z 1 — 6ks(Y, N)k1(Y)Cslreg
1
(210) (K41 +2K1)Crls + KuCrlQfPo "~ g + 3K4(1+ 2K1)Cals)eo < 3,
where T = Npo/(N + po),
1 1 1
2.11 = mi
( ) €0 mln{ 12K203l2’ 12k3(T,p0)k1(T)C4Z57 12k4(T7N)]€1(T)03l7;

1 J
6K4(1 4 2K1)Chls + 2K4C1|QPo =% "lg + 6 K4 (1 + 2K1)Csls )
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Proof. Fix

(2.12) Cy = 4K3 + 16 K311 + 16 Ko K3(1 + 2K1)l3ly,
(2.13) Oy = 4K + AKs(1 + 2K))l5,

Cs = 4k3(po, N) + 4k3(po, po)k1(po) (1 + 2K1)[| V|| Lo ()4,
(2.14) Cy = 4ky(N,N) + 4ks(N, N)k1 (N)(1 + 2K1) || V|| Lo (02) -

We give the proof for (2.8) and (2.9). Using simple calculation with (2.12), (2.13)
and (2.11), we can obtain that

2K+ 2K3C5l < 2K3+8K§l1 +8K2K3(1+2K1)1311
1-— 6K203l250 = 1-— 6K203l2/(12K20312)
< 4Kz + 16 K31 + 16 Ko K3(1 + 2K1)l3l; = Oy

and
2K3+2K2(1+2K1)13 Cy

1-— 6KQC3ZQEQ - 2— 12K203l250
Co

<
T2 - 12K503l2/(12K5C3l3)

= Ch.
By the same procedure, we can deduce that

2k3(po, N) + 2k3(po, po)k1(po)(1 + 2K1)(|VO| oo (la
1 — 6ka(T, po)k1 (T)Cilozo
2k3(po, N') + 2k3(po, po)k1(po) (1 4 2K1)[| V|| Lo ()4
1-— Gkg(T,po)kl (T)C4l5/(12/€3(T,p0)/€1 (T)C4l5)

:Cg

~

and
2k4(N, N) + 2k4(N, N)kl(N)(]. + 2K1)||V¢||Loo(9)16
1 —6k4(Y, N)k1(T)Csl7eg
2ky(N,N) + 2k4(N, N)ki (N)(1 + 2K1)||V¢||Loo(g)l6
T 1= 6ka(Y, N)k1(T)Cslz/(12k4(T, N)k1 () Cslr)

= Cy.

Thus, we conclude the lemma. O

Lemma 2.1 asserts that there is a classical solution to (1.6), which is defined on
an interval [0, Tinax). In order to prove Tyax = 00, we need the following definition.

Definition 2.8. Assume that N € {2,3}, ¢ € C'*%(Q) with 6 € (0,1). Let a; €
(Oa>‘1)7 Qg € (Ovmin{alaAll})a Do € (Nv NqO/(N - qO)) with go € (%Na N) and Cj
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(i=1,2,3,4), 0 > 0 are taken from Lemma 2.7. By use of these constants, we define

(215) T := sup{T € (0, Thmax):
[n(-t) — etATLoHLe(Q) <eo(l+ t*N(qf)_l*e_l)/Q)e*alt V8 € [po, o0],
V(- )| Loy < Creo(1 +t1/2)e 1,
[Vw(-,t)[| e (@) < Caeo(l + t=1/2)em ot
[u(, )l Lro (o) < Czeo(l + /2N 2p0) gt
[Vu(-,t)| v ) < Cago(1+t2)e >t Vi e 0,7).}

Next, with the help of Lemma 2.7 and Definition 2.8, we will re-examine the
decay properties showed in (2.15) to confirm T = Tyax = 0o by the following Lem-
mas 2.9-2.11. Since some of the following estimates have been proved in [27], Lem-
mas 3.3-3.6, we will omit their proofs.

Lemma 2.9. Under the conditions of Definition 2.8 and (2.1), the estimates
(2.16) [In(-,t) — Aol Loy < (1 + 2K1)eo(1 + =N =071/2)e—cat g e [pg. o0],
C:
2.17) V()| @) < 7250(1 4+t 1/2)em et
(2.18) ||u(.7t)HLp0(Q) < %60(1 +t71/2+N/(2;00))e*a2t,
C
(219)  [[Vu(t)zve) < eo(l+i ),

hold for all t € (0,T'), where T is defined as in Definition 2.8.

Proof. The proof can be found in [27], Lemmas 3.3-3.6. The verification
of (2.17) used the fact that the equation satisfied by w in our present case is the
same as that of ¢ in the model of [27]. O

Now we give the proof of the estimate of ||[Vv(-,t)| L~ () in Lemma 2.10.

Lemma 2.10. Under the conditions of Definition 2.8 and (2.1), the estimate
Gy —1/2\ —ait
(2.20) 1900, )2y < Sreo(l+ )

holds for all t € (0,T), where T is defined as in Definition 2.8.

Proof. According to (1.6)2 we have the following representation formula for all
te(0,7T),

¢
v(-,t) = B Vyy + / =)A=y —u-Vo)(-, s)ds.
0
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Applying Lemma 2.4, we have K5, K3 > 0 such that
(2:21) [IVo(-, )l Loy < Ka(1 4+t 12)e”MHD8 Vg v q)
+ /t Ve = Aa (., 5)|| oo (o) ds
# [ IO als) - Tl
= K3(1 4+t e My || vy + 1 + L2, t€(0,T).

Next we focus on estimating I, Io. According to (2.15)3 and (2.5) and Lemma 2.4,

t
(2.22) L< / Kye~ QD09 [T (-, )| e g s
0

¢

< / K3C2goe*()\1+1)(tfs)(1_’_871/2)8—(115 ds
0

< K3Coliege™ ¢t € (0,T).

At this point, using (2.15)24 (2.6), Lemma 2.4 and Holder’s inequality, we derive
that
(2.23)

I < / Ko(1+ (t — 5) 127 N/200)e= Mt D=9 |y (. 5) - Vo, 8)|| Lro () ds
/ K2 1+ (t )—1/2—N/2;00)e—()\1+1)(t—s)Hu(,,S)HLPO(Q) . ||Vv(-,s)||Loo(Q) ds

< / K(1+ (t_8)71/27N/2;00)e*()\lJrl)(t*S)ClC:S(1+871/2+N/(2p0))
><0(1 + 5_1/2) —(entaz)s 2 ods
< 3K201035(2)/ (14 (t— s)_l/Q_N/on)e_(”\l"’l)(t_s)(1 + 5_1+N/2p0)e_als ds
0
< 3K,C1Csla(1 +t72)e 2 t e (0,T).
Collecting (2.21)—(2.23) and (2.1), we obtain
V(- )| Loy < (K3 + K3Cali + 3K2C1C3laeg) (1 +t71/2)e g
< %50(1 +t7%em Mt e (0,7).
(I

With lemmas above in hand, we can furthermore obtain the following estimates
for n and u from [27], Lemma 3.7 and [3], Lemma 4.9.
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Lemma 2.11. Under the conditions of Definition 2.8 and (2.1), 8 € (1N, 1), the
estimates

(2.24) |[n(-,t) — e nol|Loa) < %0(1 + 17 N@ TD2)emat g e [pg, o0,
(2.25) A% a(-, )| L2 () < Cse™ 2

hold for all t € (0,T), where T is defined as in Definition 2.8 and C5 = C5(8,g9) > 0.

Next, we prove T = T ax = 00 using the lemmas we have obtained above to state
that the classical solution of (1.6) is global.

Lemma 2.12. Under the conditions of Definition 2.8 and the smallness hypoth-
esis (2.1) of initial data, the solution of (1.6) exists globally in time with the decay
properties listed in (1.10).

Proof. Firstly, we prove T' = Tiyax = 00. If Tiyax > T, according to (2.18)—(2.20)
and (2.24) we have

n(:,T) - etAnOHLe(Q) < 630(1 + T_N(qgl_‘gfl)/Q)e_(’lT Y6 € [po, 0],
V6 Ty < ot + T2,
[V T) ey < Lot + 7721,
[u, )|l Lro(o) < %60(1 + T2/ 2p0)gm a2 T
[Va(, T)|[L~ @) < %60(1 + T71/2)ema2T

due to the fact that solutions of (1.6) continuously depend on ¢. This contradicts
the definition of T', see Definition 2.8.
If Thax =T < 00, from Lemma 2.1 and (2.25) we know that

(2.26)  [|n(-, O)llzee) + v ) [[wro @) + [[w( E)lwre @) = 00 ast — Tax-

Since [[n(-, )| Lo (), [IVV(-, )] (@) and ||Vw(-, )|/ L (o) are finite for ¢ € (0, Trax)
due to (2.15)12,3, we can derive the following estimates for |v(-,t)[/z~(q) and
lw(-,t)||L(q) by use of Poincaré’s inequality and Lemma 2.2. Namely, there exist
some Cyp, Cyyp > 0 such that for all ¢ € (0,7,

1
Hw(',t) N ﬁ/gwo(x) da < Cupl[Vw (-, 1) || 2= (),

Lo ()

< Cop|I Vo, )| Lo ()

1
v(-,t) — ﬁ/ﬂvo(x) dz

L ()
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Hence, for some positive constants

max{ [, wo, [, no} max{ [, vo, [, wo, [, no}

Cw = C,U =

o Q] ’
for all t € (0,T") we have
(2.27) lw(, D)L @) < CupllVw(-, )|l Lo (@) + Cu,
(2.28) [o(s )l Loe (@) < Copl[VO( D)L (@) + Co

Combining (2.27), (2.28) with the finiteness of ||Vu(-,t)|| L) and [|[Vw(-, )| 1= (),
we can finally confirm the finiteness of ||v(-,t)||yw1.00(q) and [[w(:,t)||w1.(qy. This
contradicts (2.26). Therefore, Tiax = T = 0.

Now, we give the proof of the decaying properties listed in (1.10).

From (2.25) and embedding property with D(A”) < L>(Q), 3 € (N/4,1), there
exists Cg > 0 such that

(-, 8) o) < [APa(, )] p2(q) < Coe™ 2", ¢ >0.

As for the estimates for n,v and w, we consider them in two time intervals: (0,7)
and [t1,00), where t; € (0,7]. Firstly we focus on (0,¢;). Lemma 2.1 guarantees
that ||n(-,t)[| L) + [0, 1) [[wro @) + lw(-, t)|[wr. () < 7, hence by Minkowski’s
inequality for all ¢ € (0,¢1) we have

(2:29)  [In( 1) = follLe=(@) < [InC8)llLs(@) + 170l Lo (@) < (1 + fig)e™* et
Similarly, we can obtain

(n + mo)e™ e,

(,'7 + 'ﬁo)ealtl e—(ylt

(2.30) [lv(-,t) — Rollw.~ ()

( [o(, 0)]lwr.e @) + 170l L (@)
(2.31) Jlw(-, t) — Aoy,

NN

<|
@) < llw( Dllwre @) + 170l L= ()

for all ¢ € (0,¢1).
Secondly, we consider ¢ > t;. According to (2.16), we can deduce that

(14 2K;)eg(1 4 t~N/20)e= ot

(2.32) () — Mol Lo (o) <
< (14 2K1)eg(1 + ] V20 eent

for all t > t;.
From (2.29) and (2.32) we can conclude that for all ¢ > 0, ||n(-,t) — no|| () <
Cre= ' where C7 := max{(n + fg)e™", (1 4+ 2K1)eo(1 + tl_N/qu)}.
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Now we estimate the stabilization of w(-,t). Since

t
w(t) = o = e Vg + [ IO (e 5) = o) ds
0
t
+/ t=A-Dy(. 8) . Va(-, ) ds — e tig
0
t
< et(Afl)wO +/ e(tfs)(Afl) (n(’ S) — ﬁo) dS
0
t
+/ et=)A=Ny(. s) - Vw(-,s)ds
0
hold for all ¢ > 0. Applying (2.17), Lemmas 2.4 and 2.3, we can find Cg > 0 such that

(2.33) lw(-,t) — noll L ()

t
< e A g | ey + / A (-, 5) — 20) | o gy s
0

t
+/ [et=9ADu(., ) - T (-, 8)|| L () ds
0
< 2K1e” Mg || poc ()

t
+ / Ki(1+ 2K1)50e_(’\1+1)(t_8)(1 + S_N/(Qq‘)))e_"‘ls ds
0

t
_|_/ e*(>\1+1)(t*8)C6efazsc260(1_’_871/2)e—alsds
0

<Cge™ ™'t >t

According to Velt=)(A=D57, = 0, there exists Cy > 0 such that
(2.34)
[V(w(-,t) = 0) || oo ()

t
< Ve @D poe () +/ Ve =)A= (n(., 5) — fg)|| oo (o) ds
0

t
+ / [Velt=EDu(, 5) - T, 5)]| = (e ds
0
< Ko(1+to 1 /)e™ Mt g | oo
t
+ Ky(1 + QKI)EO/ (14 (t—s)"V2)e~MtDE=)(1 4 g~ N/Qw))e—1s g4
0
t
+ I / (14 (t —5)"1/2)em QDI G2 Cyeg (1 457 1/2)e 1% ds
0
< Cgeialt, t =1

64



Collecting (2.31), (2.33) and (2.34) we can find Cyp > 0 such that for all ¢t > 0,

||w(-,t) — ﬁ0||W1x(Q) < Cloeialt.

As for the estimates for v, according to the smooth properties of the Neumann heat
semigroup with (2.33), (2.18) and Lemma 2.10, there exists constant C71 > 0 such
that
(2.35)

(-, t) = 7ol L (o)

t
< ||et(A71)UO||L°°(Q) +/ [le= A (a (-, 5) — n0) | oo () ds
0
t
+/ [et=)NA=Dy(., 5) - Vo (-, 8)|| o () ds
0
t
< 2K1€7(A1+1)t||vo||Loo(Q) +/ 2010K167()\1+1)(t75)efa15 ds
0

t
+ Kg/ (14 (t —s)" /e MHDE=9) Crem250 g0 (1 + s~/ 2)e 15 ds
0

< Cre ™, t>t.
Following similar procedure as (2.33)—(2.34), one can find Cj2 > 0 such that
(236) ||’U(',t) - ﬁo”Wl,oo(Q) < Clgeialt Vi>ty.

Due to the fact that (2.30), (2.35) and (2.36) hold, we can finally complete the
proof. O

3. PrROOF OF THEOREM 1.1

In this section, we improve the smallness assumption about initial data in (2.1).
Namely, under the condition that

(3.1) Im0ll Lvr2q) + Vool Ly @) + [[Vwoll Ly @) + [[wollzy ) < €o

for some &y > 0, we will establish the final decay estimates in Theorem 1.1. Another
definition will be needed.

Definition 3.1. Assume that N € {2,3}, ¢ € C'*%(Q) with 6 € (0,1). Let
a € (Oa>‘1)7 Qg € (0,111111{041,)\’1}), Do € (Q(jOaN(jO/(N_ qO)) with go € (N/QaN)
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We define

(3.2) T := sup{T € (0, Tax):
[n(,t) — el Loy < Eo(1+ ¢/t 9 € [Go, fo,
[V (-, )] oo () < Créo(1+tH2)e et
[Vw(-, t)|| L= () < 5250(1 + 71/t
a(, )] ooy < Cafo(L + t~1/3HN/2P0)e =0zt
[Vu(-, t)|| vy < Cido(L+t712)e~2t Vi € [0,T)}

with £, 51, 52, 6’3, Cy>0 satisfying

\

C1 > AK5 + 4K3051,

Cy > 4K3 + 4Ko(1 + 2K,)l3,

Cs > 4ks(Po, N) + 4ks (o, Po)k1 (o) (1 + 2K1)|| V|| L ()las

G > 2ka(N. V) + 2k4 (N, Ny ()0 =N/ GoN) (1 1 2)[[ V| o sy o

N . 1 1 1

50<mm{ ~ =~ =~ =~ 70 =~ ~N =~ 7
12K5C5l 12k3(T, po)k1 () Cals 12k4(T, N)ky (T)Cslr

1
6K 4(1 + 2K1)Chls + 2K4Cy QY D0—-2/N]y + 6K 4(1 + 2K1)Csls }

where T = Njo/(N + po).

The quantities il, I, and l~4, i5, ls, I are analogous to [y, lo and l4, I5, lg, l7,
respectively, which arise in Lemma 2.7 with pg, qo replaced by pg, Go- The quantities
l~3, Zg, lo are constants which appear in the inequalities

/ (L4 (£ — ) V2NN (=0) (] 4 5~ LN 20y g
0
<Is(1+t712)e
/t(l + (f, _ S)—1/2—N/2(N/qo—1/9))e—)\1(t—s)(1 4 8—3/2+N/2<}0)e—oqs ds
i L lg(1 + ¢~ 1HN/20)gmant
/t(l (- 8)71/27N/2(N/6071/9))ef)\1(tfs)(1 T 871/2)efalsds
’ < ig(l + t—HrN/ze)e—alt7

by Lemma 2.3 since § + N/(2p9) < 1, 3 — N/(24o) < 1 and 3+ sN(N/Go+1/6) < 1.

It is also necessary to re-check the decay estimates in (3.2) to show that 7' =
Tax = 00. Similarly to Lemma 2.9, we can obtain some further conclusions by the
same methods. We state them in the following lemma.
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Lemma 3.2. Under the conditions of Definition 3.1 and (3.1), the estimates
In(-,1) = 7ol Logay < (1+2K1)E0(1 + ¢ V20 )e1t 0 € [go, o,
Cs ~1/2),-a
(33)  IVul, Dl < eo(1+12)ee,

_50(1 + t—1/2+N/2[30)e—a2t,

C
(3.4) [, )l Lo (o) < 23

C
(35)  [VaC, v < Shéo(l + e

hold for all t € (0,T), where T is defined as in Definition 3.1.

Proof. This lemma can be concluded by using the procedures as that in the
proof of [27], Lemmas 3.9-3.12. O

Based on Lemma 3.2, we have the estimate for Vv in Lemma 3.3. Since the

procedure is analogous to the proof of Lemma 2.10, we omit the details.

Lemma 3.3. Under the conditions of Definition 3.1 and (3.1), the estimate

Cr . _ _
(3.6) 1900 1) 20y < Sheo(1+¢71/2)emen!

holds for all t € (0,T"), where T is defined as in Definition 3.1.

Finally, from Lemma 3.2 and (3.6) we have

€
(BT 1) — ooy < 2

(3.8) lAPu(-, 1) 2y < Cse™ 2!

1+t—1+N/20)e—041t, 6 € [qo, Pol,

for all ¢t € (0,T), where T is defined as in Definition 3.1. More details about the
proof can be found in [27], Lemma 3.13 and [3], Lemma 4.9.

Lemma 3.4. Under the conditions of Definition 2.8 and smallness hypothesis (3.1)
of initial data, system (1.6) admits a global classical solution. Moreover, for allt > 0,

50(1 + t_1+N/20) _alt 0 S [quﬁO]a

[n(-,t) — 7ol Lo(q) Co
Coéo(1 +t71/2)e o,
Co

<
[Vo(-, )l =) <
[Vw(-, )| Lo @) <

<

[u(, )HLOO(Q)

€~ (1 +t_1/2) —oclt
C —aot

with 50 > 0 independent of £y and Cy = Cy(&o) > 0.
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Proof. Firstly, we focus on deducing T' = Tax = 00. In the case T' = Tiax < 0,
we can derive that [[n(-,t)[| ) < o0 if |Vv(-, )| 1 (q) is bounded by applying the
properties of Neumann heat semigroup. In the case Tyax > T, from (3.4)—(3.7), we
know that the definition of T in (3.2) is failed. According to Lemma 2.1 we can
finally conclude T' = Tax = oo. The equations (3.3)—(3.8) could yield the required
decay estimates in Lemma 3.4. O

Now, we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Let go € [Go, V) and choose the

R €o
(3.9) €= mm{go’igmp/qo%/N}’
where £¢, &g are determined in Definitions 2.8 and 3.1, respectively. If
ol L2y + [[VvollLy @) + [[VwollLv o) + [[uollzx @) <&,
from Lemma 3.4 we can obtain that for all ¢ > 0,

(- ) — 7iol[ Lao () < 5050(1 + ¢ 1HN/ 200y ont
[Vo(, ) ||L= () < Coéo(1 +t71/2)e
[V (-, )| o0y < Cofo(l+t72)e 1t |ju(-, )| peo(a) < Coe™ 2"

In order to use Lemma 2.12, we obtain the following estimates by using the above
inequalities.

[n(, ) Lawo @) < (-, t) = nollLao ) + 170l Lo ()

CoZo(L + ¢ VHN/20)e=ent | |g/a0—2/N,
QYN[ Vo, 1) | Lo () < QYN Codo(1+t7H/2)em 0t
QN[ V()] o o) < QYN Codo(1 +t7H2)e >,
|

QYN (-, 8)|| poe ey < QYN Toee2t.

[Vo(, )Ly @)
[Vw(-, )Ly @)
ul Ol Ly o)

INCINCIN NN

Noticing that —1 4+ N/2qy < 0 with qo > o > %N, we know that there exists ty > 0
such that

~ E ~
Coéo(1 + to~ HN/2a0)emonto ¢ 307 Q"N Cogo(1+to~1/2)em o < g,
|Q|1/N6067a2t0 < g¢.-
From (3.9), we know that

(3.10) e|Q/ 22N ¢ %0

Consequently, (n(z,to), v(z,to), w(z, to), u(x, to)) satisfies the condition of the initial
data demanded in Lemma 2.12. This proves Theorem 1.1. O
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