[8] Benjamin, A. T., Gaebler, D., Gaebler, R.:
A combinatorial approach to hyperharmonic numbers. Integers 3 (2003), Article ID A15, 9 pages.
MR 2036481 |
Zbl 1128.11309
[10] Cobeli, C., Panaitopol, L., Vâjâitu, M., Zaharescu, A.:
Some asymptotic formulas involving primes in arithmetic progressions. Comment. Math. Univ. St. Pauli 53 (2004), 23-35.
MR 2084357 |
Zbl 1065.11074
[11] Comtet, L.:
Sur les coefficients de l'inverse de la série formelle $\sum n!t^n$. C. R. Acad. Sci., Paris, Sér. A 275 (1972), 569-572 French.
MR 0302457 |
Zbl 0246.05003
[15] Camargo, A. P. de, Martin, P. A.:
Constant components of the Mertens function and its connections with Tschebyschef's Theory for counting prime numbers. (to appear) in Bull. Braz. Math. Soc. (N.S.).
DOI 10.1007/s00574-021-00267-4 |
MR 4418781
[17] Grosswald, É.:
Sur l'ordre de grandeur des différences $\psi(x)-x$ et $\pi(x)-{ li} x$. C. R. Acad. Sci., Paris 260 (1965), 3813-3816 French.
MR 0179146 |
Zbl 0127.02005
[18] Hassani, M.:
Approximation of $\pi(x)$ by $\Psi(x)$. JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Articles ID 7, 7 pages.
MR 2217170 |
Zbl 1137.11009
[20] Hassani, M.:
Generalizations of an inequality of Ramanujan concerning prime counting function. Appl. Math. E-Notes 13 (2013), 148-154.
MR 3141823 |
Zbl 1286.11011
[22] Ingham, A. E.:
The Distribution of Prime Numbers. Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, London (1932).
MR 0184920 |
Zbl 0006.39701
[24] Littlewood, J. E.: Sur la distribution des nombres premiers. C. R. Acad. Sci., Paris 158 (1914), 1869-1872 French \99999JFM99999 45.0305.01.
[26] Mincu, G., Panaitopol, L.:
Properties of some functions connected to prime numbers. JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article ID 12, 10 pages.
MR 2391279 |
Zbl 1196.11124
[29] Panaitopol, L.:
A formula for $\pi(x)$ applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. 5 (2000), 55-56.
MR 1760776 |
Zbl 0982.11003
[31] Panaitopol, L.:
Asymptotic formulas involving $\pi(x)$. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 44 (2001), 91-96.
MR 2013429 |
Zbl 1047.11007
[32] Panaitopol, L.:
Inequalities involving prime numbers. Math. Rep., Bucur 3(53) (2001), 251-256.
MR 1929536 |
Zbl 1059.11007
[33] Panaitopol, L.:
A special case of the Hardy-Littlewood conjecture. Math. Rep., Bucur 4(54) (2002), 265-268.
MR 2067638 |
Zbl 1070.11044
[34] Riemann, B.:
Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte Königlichen Preußischen Akademie der Wissenschaften Berlin (1859), 671-680 German.
DOI 10.1017/CBO9781139568050.008
[35] Schmidt, E.:
Über die Anzahl der Primzahlen unter gegebener Grenze. Math. Ann. 57 (1903), 195-204 German \99999JFM99999 34.0230.02.
DOI 10.1007/BF01444344 |
MR 1511206
[38] Walfisz, A.:
Weylsche Exponentialsummen in der neueren Zahlentheorie. Mathematische Forschungsberichte 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1963), German.
MR 0220685 |
Zbl 0146.06003