Previous |  Up |  Next

Article

Keywords:
Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form
Summary:
We systematically investigate the expressions and congruences for both a one-parameter family $\{G_n(x)\}$ as well as a two-parameter family $\{G_n(r,m)\}$ of sequences.
References:
[1] Ahlgren, S.: Gaussian hypergeometric series and combinatorial congruences. Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics Developments in Mathematics 4. Kluwer Academic, Dordrecht (2001), 1-12. DOI 10.1007/978-1-4613-0257-5_1 | MR 1880076 | Zbl 1037.33016
[2] Almkvist, G., Zudilin, W.: Differential equations, mirror maps and zeta values. Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 481-515. MR 2282972 | Zbl 1118.14043
[3] Apéry, R.: Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque 61 (1979), 11-13 French. MR 3363457 | Zbl 0401.10049
[4] Gould, H. W.: Combinatorial Identities. A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. West Virginia University, Morgantown (1972). MR 0354401 | Zbl 0241.05011
[5] Granville, A.: Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers. Organic Mathematics CMS Conference Proceedings 20. AMS, Providence (1997), 253-276. MR 1483922 | Zbl 0903.11005
[6] Guo, V. J. W.: Proof of Sun's conjectures on integer-valued polynomials. J. Math. Anal. Appl. 444 (2016), 182-191. DOI 10.1016/j.jmaa.2016.06.028 | MR 3523373 | Zbl 1383.11030
[7] Liu, J.-C., Ni, H.-X.: On two supercongruences involving Almkvist-Zudilin sequences. Czech. Math. J. 71 (2021), 1211-1219. DOI 10.21136/CMJ.2021.0384-20 | MR 4339123 | Zbl 07442486
[8] Mortenson, E.: Supercongruences for truncated $_{n+1}F_n$ hypergeometric series with applications to certain weight three newforms. Proc. Am. Math. Soc. 133 (2005), 321-330. DOI 10.1090/S0002-9939-04-07697-X | MR 2093051 | Zbl 1152.11327
[9] Petkovšek, M., Wilf, H. S., Zeilberger, D.: $A=B$. A. K. Peters, Wellesley (1996). MR 1379802 | Zbl 0848.05002
[10] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org Zbl 1159.11327
[11] Sun, Z.-H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. 105 (2000), 193-223. DOI 10.1016/S0166-218X(00)00184-0 | MR 1780472 | Zbl 0990.11008
[12] Sun, Z.-H.: Congruences involving Bernoulli and Euler numbers. J. Number Theory 128 (2008), 280-312. DOI 10.1016/j.jnt.2007.03.003 | MR 2380322 | Zbl 1154.11010
[13] Sun, Z.-H.: Congruences concerning Legendre polynomials. Proc. Am. Math. Soc. 139 (2011), 1915-1929. DOI 10.1090/S0002-9939-2010-10566-X | MR 2775368 | Zbl 1225.11006
[14] Sun, Z.-H.: Identities and congruences for a new sequence. Int. J. Number Theory 8 (2012), 207-225. DOI 10.1142/S1793042112500121 | MR 2887891 | Zbl 1290.11048
[15] Sun, Z.-H.: Congruences concerning Legendre polynomials. II. J. Number Theory 133 (2013), 1950-1976. DOI 10.1016/j.jnt.2012.11.004 | MR 3027947 | Zbl 1277.11002
[16] Sun, Z.-H.: Congruences involving ${2k\choose k}^{2}{3k\choose k}$. J. Number Theory 133 (2013), 1572-1595. DOI 10.1016/j.jnt.2012.10.001 | MR 3007123 | Zbl 1300.11007
[17] Sun, Z.-H.: Legendre polynomials and supercongruences. Acta Arith. 159 (2013), 169-200. DOI 10.4064/aa159-2-6 | MR 3062914 | Zbl 1287.11004
[18] Sun, Z.-H.: Generalized Legendre polynomials and related supercongruences. J. Number Theory 143 (2014), 293-319. DOI 10.1016/j.jnt.2014.04.012 | MR 3227350 | Zbl 1353.11005
[19] Sun, Z.-H.: Super congruences concerning Bernoulli polynomials. Int. J. Number Theory 11 (2015), 2393-2404. DOI 10.1142/S1793042115501110 | MR 3420752 | Zbl 1388.11004
[20] Sun, Z.-H.: Supercongruences involving Bernoulli polynomials. Int. J. Number Theory 12 (2016), 1259-1271. DOI 10.1142/S1793042116500779 | MR 3498625 | Zbl 1419.11005
[21] Sun, Z.-H.: Supercongruences involving Euler polynomials. Proc. Am. Math. Soc. 144 (2016), 3295-3308. DOI 10.1090/proc/13005 | MR 3503698 | Zbl 1388.11005
[22] Sun, Z.-H.: Super congruences for two Apéry-like sequences. J. Difference Equ. Appl. 24 (2018), 1685-1713. DOI 10.1080/10236198.2018.1515930 | MR 3867051 | Zbl 1446.11007
[23] Sun, Z.-H.: Congruences involving binomial coefficients and Apéry-like numbers. Publ. Math. 96 (2020), 315-346. DOI 10.5486/PMD.2020.8577 | MR 4108043 | Zbl 1474.11002
[24] Sun, Z.-H.: Supercongruences and binary quadratic forms. Acta Arith. 199 (2021), 1-32. DOI 10.4064/aa200308-27-9 | MR 4262886 | Zbl 1472.11026
[25] Sun, Z.-W.: Super congruences and Euler numbers. Sci. China, Math. 54 (2011), 2509-2535. DOI 10.1007/s11425-011-4302-x | MR 2861289 | Zbl 1256.11011
[26] Sun, Z.-W.: On sums involving products of three binomial coefficients. Acta Arith. 156 (2012), 123-141. DOI 10.4064/aa156-2-2 | MR 2997562 | Zbl 1269.11019
[27] Sun, Z.-W.: Conjectures and results on $x^2$ mod $p^2$ with $4p=x^2+dy^2$. Number Theory and Related Areas Advanced Lectures in Mathematics (ALM) 27. International Press, Somerville (2013), 149-197. MR 3185874 | Zbl 1317.11034
[28] Sun, Z.-W.: Some new series for $1/\pi$ and related congruences. J. Nanjing Univ., Math. Biq. 31 (2014), 150-164. DOI 10.3969/j.issn.0469-5097.2014.02.004 | MR 3362545 | Zbl 1324.11008
[29] Sun, Z.-W.: New series for some special values of $L$-functions. J. Nanjing Univ., Math. Biq. 32 (2015), 189-218. DOI 10.3969/j.issn.0469-5097.2015.02.006 | MR 3616300 | Zbl 1349.11127
[30] Sun, Z.-W.: Supercongruences involving dual sequences. Finite Fields Appl. 46 (2017), 179-216. DOI 10.1016/j.ffa.2017.03.007 | MR 3655755 | Zbl 1406.11007
[31] Tauraso, R.: Supercongruences for a truncated hypergeometric series. Integers 12 (2012), Article ID A45, 12 pages. MR 3083418 | Zbl 1301.11020
[32] Tauraso, R.: Supercongruences related to $_3F_2(1)$ involving harmonic numbers. Int. J. Number Theory 14 (2018), 1093-1109. DOI 10.1142/S1793042118500689 | MR 3801086 | Zbl 1421.11008
[33] Enckevort, C. van, Straten, D. van: Monodromy calculations of fourth order equations of Calabi-Yau type. Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 539-559. DOI 10.1090/amsip/038/23 | MR 2282974 | Zbl 1117.14043
[34] Wang, C.: On two conjectural supercongruences of Z.-W. Sun. Ramanujan J. 56 (2021), 1111-1121. DOI 10.1007/s11139-020-00283-w | MR 4341113 | Zbl 07438419
[35] Wang, C., Sun, Z.-W.: Proof of some conjectural hypergeometric supercongruences via curious identities. J. Math. Anal. Appl. 505 (2022), Article ID 125575, 20 pages. DOI 10.1016/j.jmaa.2021.125575 | MR 4302676 | Zbl 07412972
[36] Zagier, D.: Integral solutions of Apéry-like recurrence equations. Groups and Symmetries CRM Proceedings and Lecture Notes 47. AMS, Providence (2009), 349-366. DOI 10.1090/crmp/047 | MR 2500571 | Zbl 1244.11042
Partner of
EuDML logo