Previous |  Up |  Next

Article

Keywords:
weak injective module; weak flat module; weak $n$-injective module; weak $n$-flat module; cotorsion theory
Summary:
We introduce and study the concepts of weak $n$-injective and weak $n$-flat modules in terms of super finitely presented modules whose projective dimension is at most $n$, which generalize the $n$-FP-injective and $n$-flat modules. We show that the class of all weak $n$-injective $R$-modules is injectively resolving, whereas that of weak $n$-flat right \hbox {$R$-modules} is projectively resolving and the class of weak $n$-injective (or weak $n$-flat) modules together with its left (or right) orthogonal class forms a hereditary (or perfect hereditary) cotorsion theory.\looseness +1
References:
[1] Bravo, D., Gillespie, J., Hovey, M.: The stable module category of a general ring. Available at https://arxiv.org/abs/1405.5768 (2014), 38 pages .
[2] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216 \99999DOI99999 10.1080/00927879608825742 . MR 1402554 | Zbl 0877.16010
[3] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[4] Gao, Z., Huang, Z.: Weak injective covers and dimension of modules. Acta Math. Hung. 147 (2015), 135-157 \99999DOI99999 10.1007/s10474-015-0540-7 . MR 3391518 | Zbl 1363.18011
[5] Gao, Z., Wang, F.: All Gorenstein hereditary rings are coherent. J. Algebra Appl. 13 (2014), Article ID 1350140, 5 pages \99999DOI99999 10.1142/S0219498813501405 . MR 3153875 | Zbl 1300.13014
[6] Gao, Z., Wang, F.: Weak injective and weak flat modules. Commun. Algebra 43 (2015), 3857-3868 \99999DOI99999 10.1080/00927872.2014.924128 . MR 3360853 | Zbl 1334.16008
[7] Lee, S. B.: $n$-coherent rings. Commun. Algebra 30 (2002), 1119-1126 \99999DOI99999 10.1080/00927870209342374 . MR 1892593 | Zbl 1022.16001
[8] Pérez, M. A.: Introduction to Abelian Model Structures and Gorenstein Homological Dimensions. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016). DOI 10.1201/9781315370552 | MR 3588011 | Zbl 1350.13003
[9] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329 \99999DOI99999 10.1112/jlms/s2-2.2.323 . MR 258888 | Zbl 0194.06602
[10] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules. Czech. Math. J. 61 (2011), 359-369. DOI 10.1007/s10587-011-0080-4 | MR 2905409 | Zbl 1249.13011
Partner of
EuDML logo