Complex symmetry of Toeplitz operators on the weighted Bergman spaces.
(English).Czechoslovak Mathematical Journal,
vol. 72
(2022),
issue 3,
pp. 855-873
Keywords: complex symmetry; Toeplitz operator; weighted Bergman space
Summary: We give a concrete description of complex symmetric monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on the weighted Bergman space $A^2(\Omega )$, where $\Omega $ denotes the unit ball or the unit polydisk. We provide a necessary condition for $T_{z^p \bar {z}^q}$ to be complex symmetric. When $p,q \in \mathbb {N}^2$, we prove that $T_{z^p \bar {z}^q}$ is complex symmetric on $A^2(\Omega )$ if and only if $p_1 = q_2$ and $p_2 = q_1$. Moreover, we completely characterize when monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on $A^2(\mathbb {D}_{n})$ are $J_U$-symmetric with the $ n \times n$ symmetric unitary matrix $U$.
[10] Jiang, C., Dong, X., Zhou, Z.: Complex symmetric Toeplitz operators on the unit polydisk and the unit ball. Acta Math. Sci., Ser. B, Engl. Ed. 40 (2020), 35-44. DOI 10.1007/s10473-020-0103-2 | MR 4070746
[11] Jiang, C., Zhou, Z.-H., Dong, X.-T.: Commutator and semicommutator of two monomial-type Toeplitz operators on the unit polydisk. Complex Anal. Oper. Theory 13 (2019), 2095-2121. DOI 10.1007/s11785-017-0730-0 | MR 3979700 | Zbl 07081947
[14] Li, R., Yang, Y., Lu, Y.: A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces. J. Math. Anal. Appl. 489 (2020), Article ID 124173, 11 pages. DOI 10.1016/j.jmaa.2020.124173 | MR 4093056 | Zbl 07205245