Previous |  Up |  Next

Article

Keywords:
two-phase flow; magnetic field; vacuum; local well-posedness
Summary:
This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain $\Omega \subset \mathbb {R}^3$ without the standard compatibility conditions.
References:
[1] Berselli, L. C., Spirito, S.: On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains. Commun. Math. Phys. 316 (2012), 171-198. DOI 10.1007/s00220-012-1581-1 | MR 2989457 | Zbl 1254.35175
[2] Carrillo, J. A., Goudon, T.: Stability and asymptotic analysis of a fluid-particle interaction model. Commun. Partial Differ. Equations 31 (2006), 1349-1379. DOI 10.1080/03605300500394389 | MR 2254618 | Zbl 1105.35088
[3] Cho, Y., Choe, H. J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl., IX. Sér. 83 (2004), 243-275. DOI 10.1016/j.matpur.2003.11.004 | MR 2038120 | Zbl 1080.35066
[4] Choe, H. J., Kim, H.: Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differ. Equations 190 (2003), 504-523. DOI 10.1016/S0022-0396(03)00015-9 | MR 1970039 | Zbl 1022.35037
[5] Enomoto, Y., Shibata, Y.: On the $\mathcal R$-sectoriality and the initial boundary value problem for the viscous compressible fluid flow. Funkc. Ekvacioj, Ser. Int. 56 (2013), 441-505. DOI 10.1619/fesi.56.441 | MR 3157151 | Zbl 1296.35118
[6] Fan, J., Yu, W.: Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal., Real World Appl. 10 (2009), 392-409. DOI 10.1016/j.nonrwa.2007.10.001 | MR 2451719 | Zbl 1154.76389
[7] Gong, H., Li, J., Liu, X.-G., Zhang, X.: Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum. Commun. Math. Sci. 18 (2020), 1891-1909. DOI 10.4310/CMS.2020.v18.n7.a4 | MR 4195559 | Zbl 07342276
[8] Hong, G., Hou, X., Peng, H., Zhu, C.: Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum. SIAM J. Math. Anal. 49 (2017), 2409-2441. DOI 10.1137/16M1100447 | MR 3668595 | Zbl 1372.35164
[9] Huang, X.: On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum. (to appear) in Sci. China, Math. DOI 10.1007/s11425-019-9755-3
[10] Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158 (2001), 61-90. DOI 10.1007/PL00004241 | MR 1834114 | Zbl 0974.76072
[11] Nowakowski, B., Ströhmer, G., Zajączkowski, W. M.: Large time existence of special strong solutions to MHD equations in cylindrical domains. J. Math. Fluid Mech. 20 (2018), 1013-1034. DOI 10.1007/s00021-017-0353-2 | MR 3841971 | Zbl 1401.35253
[12] Nowakowski, B., Zajączkowski, W. M.: On global regular solutions to magnetohydrodynamics in axi-symmetric domains. Z. Angew. Math. Phys. 67 (2016), Article ID 142, 22 pages. DOI 10.1007/s00033-016-0734-z | MR 3566925 | Zbl 1358.35128
[13] Piasecki, T., Shibata, Y., Zatorska, E.: On strong dynamics of compressible two-component mixture flow. SIAM J. Math. Anal. 51 (2019), 2793-2849. DOI 10.1137/17M1151134 | MR 3977107 | Zbl 1419.76541
[14] Vasseur, A., Wen, H., Yu, C.: Global weak solution to the viscous two-phase model with finite energy. J. Math. Pures Appl. (9) 125 (2019), 247-282. DOI 10.1016/j.matpur.2018.06.019 | MR 3944205 | Zbl 1450.76033
[15] Wen, H., Zhu, L.: Global well-posedness and decay estimates of strong solutions to a two-phase model with magnetic field. J. Differ. Equations 264 (2018), 2377-2406. DOI 10.1016/j.jde.2017.10.027 | MR 3721432 | Zbl 1432.76298
[16] Zhu, S.: On classical solutions of the compressible magnetohydrodynamic equations with vacuum. SIAM J. Math. Anal. 47 (2015), 2722-2753. DOI 10.1137/14095265X | MR 3369066 | Zbl 1325.35176
Partner of
EuDML logo