[4] Cheng, C.-P., Li, W.-T., Wang, Z.-C., Zheng, S.:
Traveling waves connecting equilibrium and periodic orbit for a delayed population model on a two-dimensional spatial lattice. Int. J. Bifurcation Chaos Appl. Sci. Eng. 26 (2016), Article ID 1650049, 13 pages.
DOI 10.1142/S0218127416500498 |
MR 3482808 |
Zbl 1336.34106
[6] Guo, J.-S., Wu, C.-H.:
Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system. Osaka J. Math. 45 (2008), 327-346.
MR 2441943 |
Zbl 1155.34016
[21] Yu, Z.-X., Yuan, R.:
Nonlinear stability of wavefronts for a delayed stage-structured population model on a 2-D lattice. Osaka J. Math. 50 (2013), 963-976.
MR 3161423 |
Zbl 1287.34061
[22] Yu, Z.-X., Zhang, W., Wang, X.:
Spreading speeds and travelling waves for non-monotone time-delayed 2D lattice systems. Math. Comput. Modelling 58 (2013), 1510-1521.
DOI 10.1016/j.mcm.2013.06.009 |
MR 3143380
[23] Zhao, H.-Q.:
Asymptotic stability of traveling fronts in delayed reaction-diffusion monostable equations on higher-dimensional lattices. Electron. J. Differ. Equ. 2013 (2013), Article ID 119, 15 pages.
MR 3065072 |
Zbl 1288.35095
[28] Zou, X.:
Traveling wave fronts in spatially discrete reaction-diffusion equations on higher-dimensional lattices. Electron. J. Differ. Equ. 1997 (1997), 211-222.
MR 1672189 |
Zbl 0913.34041
[29] Zou, X., Wu, J.:
Local existence and stability of periodic traveling waves of lattice functional-differential equations. Can. Appl. Math. Q. 6 (1998), 397-418.
MR 1668040 |
Zbl 0919.34062