Previous |  Up |  Next

Article

Keywords:
Hamilton-Jacobi equation; first order monotone scheme; high order scheme; weighted essentially non-oscillatory scheme; adaptive scheme; convergence
Summary:
We propose a method of constructing convergent high order schemes for Hamilton-Jacobi equations on triangular meshes, which is based on combining a high order scheme with a first order monotone scheme. According to this methodology, we construct adaptive schemes of weighted essentially non-oscillatory type on triangular meshes for nonconvex Hamilton-Jacobi equations in which the first order monotone approximations are occasionally applied near singular points of the solution (discontinuities of the derivative) instead of weighted essentially non-oscillatory approximations. Through detailed numerical experiments, the convergence and effectiveness of the proposed adaptive schemes are demonstrated.
References:
[1] Abgrall, R.: Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes. Commun. Pure Appl. Math. 49 (1996), 1339-1373. DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B | MR 1414589 | Zbl 0870.65116
[2] Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations. SIAM J. Sci. Comput. 38 (2016), A171--A195. DOI 10.1137/140998482 | MR 3449908 | Zbl 1407.65093
[3] Cai, X., Qiu, J., Qiu, J.: Finite volume HWENO schemes for nonconvex conservation laws. J. Sci. Comput. 75 (2018), 65-82. DOI 10.1007/s10915-017-0525-5 | MR 3770312 | Zbl 1393.65021
[4] Crandall, M. G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43 (1984), 1-19. DOI 10.1090/S0025-5718-1984-0744921-8 | MR 0744921 | Zbl 0556.65076
[5] Feng, H., Huang, C., Wang, R.: An improved mapped weighted essentially non-oscillatory scheme. Appl. Math. Comput. 232 (2014), 453-468. DOI 10.1016/j.amc.2014.01.061 | MR 3181284 | Zbl 1410.65306
[6] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001), 89-112. DOI 10.1137/S003614450036757X | MR 1854647 | Zbl 0967.65098
[7] Huang, C.: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation. Appl. Math. Comput. 290 (2016), 21-32. DOI 10.1016/j.amc.2016.05.022 | MR 3523409 | Zbl 1410.65313
[8] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2000), 2126-2143. DOI 10.1137/S106482759732455X | MR 1762034 | Zbl 0957.35014
[9] Kim, K., Li, Y.: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations. J. Sci. Comput. 65 (2015), 110-137. DOI 10.1007/s10915-014-9955-5 | MR 3394440 | Zbl 1408.65053
[10] Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 28 (2006), 2229-2247. DOI 10.1137/040612002 | MR 2272259 | Zbl 1126.65075
[11] Oberman, A. M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes. J. Comput. Phys. 284 (2015), 367-388. DOI 10.1016/j.jcp.2014.12.039 | MR 3303624 | Zbl 1352.65422
[12] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991), 907-922. DOI 10.1137/0728049 | MR 1111446 | Zbl 0736.65066
[13] Qiu, J., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput. Phys. 204 (2005), 82-99. DOI 10.1016/j.jcp.2004.10.003 | MR 2121905 | Zbl 1070.65078
[14] Qiu, J.-M., Shu, C.-W.: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws. SIAM J. Sci. Comput. 31 (2008), 584-607. DOI 10.1137/070687487 | MR 2460790 | Zbl 1186.65123
[15] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (2009), 82-126. DOI 10.1137/070679065 | MR 2481112 | Zbl 1160.65330
[16] Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24 (2003), 1005-1030. DOI 10.1137/S1064827501396798 | MR 1950522 | Zbl 1034.65051
[17] Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes. J. Comput. Phys. 254 (2013), 76-92. DOI 10.1016/j.jcp.2013.07.030 | MR 3143358 | Zbl 1349.65364
[18] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations. Numer. Method Partial Differ. Equations 33 (2017), 1095-1113. DOI 10.1002/num.22133 | MR 3652179 | Zbl 1371.65089
Partner of
EuDML logo