[4] Babuška, I., Strouboulis, T.:
The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford (2001).
MR 1857191 |
Zbl 0995.65501
[9] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.:
Computational Differential Equations. Cambridge University Press, Cambridge (1996).
MR 1414897 |
Zbl 0946.65049
[10] Ern, A., Stephansen, A. F., Vohralík, M.:
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234 (2010), 114-130.
DOI 10.1016/j.cam.2009.12.009 |
MR 2601287 |
Zbl 1190.65165
[11] Ern, A., Vohralík, M.:
Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015), 1058-1081.
DOI 10.1137/130950100 |
MR 3335498 |
Zbl 1312.76026
[12] Jiránek, P., Strakoš, Z., Vohralík, M.:
A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32 (2010), 1567-1590.
DOI 10.1137/08073706X |
MR 2652091 |
Zbl 1215.65168
[18] Roos, H.-G., Stynes, M., Tobiska, L.:
Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. Springer Series in Computational Mathematics 24, Springer, Berlin (2008).
DOI 10.1007/978-3-540-34467-4 |
MR 2454024 |
Zbl 1155.65087