[3] Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P., Schroder, J. B.:
Parallel time integration with multigrid. SIAM J. Sci. Comput. 36 (2014), C635--C661.
DOI 10.1137/130944230 |
MR 3499068 |
Zbl 1310.65115
[4] Farhat, C., Chandesris, M.:
Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58 (2003), 1397-1434.
DOI 10.1002/nme.860 |
MR 2012613 |
Zbl 1032.74701
[6] Gander, M. J.:
50 years of time parallel time integration. Multiple Shooting and Time Domain Decomposition Methods T. Carraro et al. Contribibutions Mathematical and Computational Sciences 9, Springer, Cham (2015), 69-113.
DOI 10.1007/978-3-319-23321-5_3 |
MR 3676210 |
Zbl 1337.65127
[8] Gander, M. J., Jiang, Y.-L., Li, R.-J.:
Parareal Schwarz waveform relaxation methods. Domain Decomposition Methods in Science and Engineering XX R. Bank et al. Lectures Notes in Computational Science and Engineering 91, Springer, Berlin (2013), 451-458.
DOI 10.1007/978-3-642-35275-1_53 |
MR 3243021 |
Zbl 1416.65007
[9] Gander, M. J., Kwok, F., Mandal, B. C.:
Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems. ETNA, Electron. Trans. Numer. Anal. 45 (2016), 424-456.
MR 3582894 |
Zbl 1355.65128
[12] Gander, M. J., Vandewalle, S.:
On the superlinear and linear convergence of the parareal algorithm. Domain Decomposition Methods in Science and Engineering XVI O. B. Widlund et al. Lectures Notes in Computational Science and Engineering 55, Springer, Berlin (2007), 291-298.
DOI 10.1007/978-3-540-34469-8_34 |
MR 2334115 |
Zbl 1104.74004
[15] Maday, Y.:
The `parareal in time' algorithm. Substructuring Techniques and Domain Decomposition Methods F. Magoulès Computational Science, Engineering and Technology Series 24, Saxe-Coburg Publications, Stirling (2010), 19-44.
DOI 10.4203/csets.24.2
[16] Maday, Y., Turinici, G.:
The parareal in time iterative solver: a further direction to parallel implementation. Domain Decomposition Methods in Science and Engineering T. J. Barth et al. Lectures Notes in Computational Science and Engineering 40, Springer, Berlin (2005), 441-448.
DOI 10.1007/3-540-26825-1_45 |
MR 2235771 |
Zbl 1067.65102
[18] Mercerat, D., Guillot, L., Vilotte, J.-P.:
Application of the parareal algorithm for acoustic wave propagation. AIP Conf. Proc. 1168 (2009), 1521-1524.
DOI 10.1063/1.3241388
[19] Neumüller, M.: Space-Time Methods: Fast Solvers and Applications. Monographic Series, Graz University of Technology, Graz (2013).
[20] Schöps, S., Niyonzima, I., Clemens, M.:
Parallel-in-time simulation of eddy current problems using parareal. IEEE Trans. Magn. 54 (2018), Article No. 7200604, 1-4.
DOI 10.1109/tmag.2017.2763090
[21] Smith, B. F., Bjørstad, P. E., Gropp, W. D.:
Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996).
MR 1410757 |
Zbl 0857.65126