[2] Bouras, A., Frayssé, V.: A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods. CERFACS Technical Report TR/PA/00/15, CERFACS, Toulouse (2000).
[6] Carson, E. C.:
Communication-Avoiding Krylov Subspace Methods in Theory and Practice. Ph.D. Thesis, University of California, Berkeley (2015).
MR 3450264
[8] Carson, E., Demmel, J.:
A residual replacement strategy for improving the maximum attainable accuracy of $s$-step Krylov subspace methods. SIAM J. Matrix Anal. Appl. 35 (2014), 22-43.
DOI 10.1137/120893057 |
MR 3152736 |
Zbl 1302.65075
[12] Sturler, E. de:
A parallel variant of GMRES$(m)$. IMACS'91: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics Criterion Press, Dublin (1991), 602-683.
MR 1204659
[13] Sturler, E. de, Vorst, H. A. van der:
Reducing the effect of global communication in GMRES$(m)$ and CG on parallel distributed memory computers. Appl. Numer. Math. 18 (1995), 441-459.
DOI 10.1016/0168-9274(95)00079-A |
Zbl 0842.65019
[14] Demmel, J., Hoemmen, M., Mohiyuddin, M., Yelick, K.:
Avoiding communication in sparse matrix computations. IEEE International Symposium on Parallel and Distributed Processing IEEE, Miami (2008), 1-12.
DOI 10.1109/IPDPS.2008.4536305
[15] Dongarra, J., Beckman, P., Moore, T.:
The international exascale software project roadmap. Int. J. High Perf. Comput. Appl. 25 (2011), 3-60.
DOI 10.1177/1094342010391989
[16] Dongarra, J., Heroux, M. A., Luszczek, P.:
High-performance conjugate-gradient benchmark: A new metric for ranking high-performance computing systems. Int. J. High Perf. Comput. Appl. 30 (2016), 3-10.
DOI 10.1177/1094342015593158 |
MR 3823058
[17] Erhel, J.:
A parallel GMRES version for general sparse matrices. ETNA, Electron. Trans. Numer. Anal. 3 (1995), 160-176.
MR 1368335 |
Zbl 0860.65021
[19] Ghysels, P., Ashby, T. J., Meerbergen, K., Vanroose, W.:
Hiding global communication latency in the GMRES algorithm on massively parallel machines. SIAM J. Sci. Comput. 35 (2013), C48--C71.
DOI 10.1137/12086563X |
MR 3033078 |
Zbl 1273.65050
[24] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams:
An Overview of Trilinos. Technical Report SAND2003-2927, Sandia National Laboratories, Albuquerque (2003), 1-42 Available at
http://www.sandia.gov/ {tgkolda/pubs/pubfiles/SAND2003-2927.pdf}.
[26] Hindmarsh, A. C., Walker, H.:
Note on a Householder Implementation of the GMRES Method. Technical Report UCID-20899, Lawrence Livermore National Laboratory, Logan (1986), Available at
https://www.osti.gov/biblio/ 7008035-note-householder-implementation-gmres-method.
MR 0069574
[27] Hoemmen, M.:
Communication-avoiding Krylov subspace methods. Ph.D. Thesis, University of California, Berkeley (2010).
MR 2941535
[30] Liesen, J., Strakoš, Z.:
Krylov Subspace Methods. Principles and Analysis. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013).
MR 3024841 |
Zbl 1263.65034
[40] Rosendale, J. Van: Minimizing inner product data dependencies in conjugate gradient iteration. International Conference on Parallel Processing, ICPP'83 IEEE Computer Society, Los Alamitos (1983), 44-46.
[41] Williams, S., Lijewski, M., Almgren, A., Straalen, B. Van, Carson, E., Knight, N., Demmel, J.:
$s$-step Krylov subspace methods as bottom solvers for geometric multigrid. 28th IEEE International Parallel and Distributed Processing Symposium IEEE Computer Society, Los Alamitos (2014), 1149-1158.
DOI 10.1109/ipdps.2014.119